博碩士論文 993202116 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.131.13.194
姓名 陳士文(Shih-Wen Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橋梁動態載重識別之直接正規化法
(Dynamic Loadings Identification of Bridge by the Direct Regularization Method)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統上獲取卡車總重與各軸軸重的方法是將車輛停置於地磅站測重,此方法費時且占地,故關於測量車輛載重衍生出許多動態載重識別法(Weight-In-Motion)的研究,其中有一部份是著重於橋樑與車輛間互制行為的載重識別研究,稱作為橋梁動態載重識別(Bridge Weight-In-Motion),特色是由橋梁的力學反應來反算出通過車輛的總重與軸重,而本文的研究引用到工程學反算理論,研究目的是以橋梁的應變來反算出移動荷載,其中橋梁結構是用有限元素法來模擬分析,分階段從單純的二維梁元素模型,到三維梁以及版元素模擬;反算理論則是將傳統的結構動力方程式求解,藉由引入應用數學中動態程序化(Dynamic Programming)討論的近似解數列誤差量觀念、線性離散時間系統(Linear Discrete-Time System)裡面的狀態空間系統(State-Space System)和線性代數求解近似值用到的其中一種直接正規化法,如Tikhonov正規化,以建立出完整的橋梁動態載重識別法來反算識別出梁上移動載重。
  另外本論文除了利用數值模擬分析來觀察整個動態載重識別法可行性外,也實際進行實驗室單跨簡支梁的實驗分析案例,由分析結果探討加入許多不可抗拒之外在影響因素後,移動軸重識別結果精確度的變化,以下會概略介紹本文的研究主軸。
摘要(英) In structural dynamics the forward problem is concerned with estimating the
response of the structure with respect to time to a known forcing function. The inverse
problem is concerned with estimating the forcing functions that cause the system to best
match the known or measured response. The procedure utilised to solve this type of
inverse problem is known as the method of general inverse theory and uses three areas of
mathematics. These are least squares minimisation with regularisation such as Tikhonov
regularisation, dynamic programming which provides an efficient solution to the least
squares problem and finally the L-curve method to calculate the optimal regularisation
parameter.
In the numerical simulation, the inverse system is already useful to identify the
passing loads clearly on the simulate beam model. The system uses the strain reactions of
each girder to calculate and monitor the bridge safety and maintenance. With this system,
we’ll have a clear and accurate data about all the passing trucks’ loading.
關鍵字(中) ★ 動態程序化
★ 狀態空間系統
★ Tikhonov正規化
★ L曲線法
★ 動態載重識別系統
關鍵字(英) ★ least square method
★ Tikhonov regularization
★ L-curve
★ dynamic programming
★ weight-in-motion
論文目次 目錄
摘要..................................................................................................................................... I
Dynamic Loadings Identification of Bridge by the Direct Regularization Method ........... II
誌謝................................................................................................................................... III
目錄................................................................................................................................... IV
表目錄............................................................................................................................. VIII
圖目錄............................................................................................................................... IX
第一章 緒論................................................................................................................... - 1 -
1.1 研究動機與目的 ...................................................................................................- 1 -
1.2 論文架構 ...............................................................................................................- 2 -
第二章 文獻回顧........................................................................................................... - 4 -
第三章 結構動力學反算求解..................................................................................... - 12 -
3.1 狀態空間方程式 ................................................................................................ - 12 -
3.1.1 理論背景 ..................................................................................................... - 12 -
3.1.2 連續方程式之離散數列 ............................................................................. - 12 -
3.1.3 結構動力方程式之狀態空間系統之轉換 ................................................. - 19 -
3.2 應變與節點自由度關係 .................................................................................... - 27 -
3.2.1 前言 ............................................................................................................. - 27 -
V
3.2.2 二維梁元素彎矩應變方程式 ..................................................................... - 28 -
3.2.3 二維梁元素剪力應變方程式 ..................................................................... - 30 -
3.2.4 Grid 梁元素應變方程式 .............................................................................. - 32 -
3.2.5 板元素應變方程式 ..................................................................................... - 35 -
3.3 多軸移動力位置追蹤 ........................................................................................ - 41 -
第四章 正規化法則..................................................................................................... - 44 -
4.1 方程解析之正規化 ............................................................................................ - 44 -
4.1.1 離散問題直接正規化法 ............................................................................. - 44 -
4.1.2 正規化參數 ................................................................................................. - 48 -
4.1.3 小結 ............................................................................................................. - 50 -
4.2 動態問題最小化程序 ........................................................................................ - 52 -
4.2.1 前言 ............................................................................................................. - 52 -
4.2.2 動態程序化基礎理論 ................................................................................. - 52 -
4.2.3 正規誤差最小化程序應用 ......................................................................... - 63 -
4.2.4 一階正規最小化程序 ................................................................................. - 71 -
4.2.5 數值分析應用案例 ..................................................................................... - 73 -
4.2.6 正規化參數選擇 ......................................................................................... - 79 -
第五章 數值模擬與分析............................................................................................. - 83 -
5.1 單跨簡支梁元素模型 ........................................................................................ - 83 -
5.1.1 梁構件分析模型 ......................................................................................... - 83 -
VI
5.1.2 梁元素參數 ................................................................................................. - 85 -
5.1.3 移動力量加載形式 ..................................................................................... - 87 -
5.1.4 動態力量識別結果 ..................................................................................... - 88 -
5.2 三維Grid 梁元素結構模擬 ............................................................................... - 93 -
5.2.1 單跨雙大梁與橫梁結構分析模型 ............................................................. - 93 -
5.2.2 移動力量加載形式 ..................................................................................... - 94 -
5.2.3 參考彎矩應變之動態力量識別結果 ......................................................... - 95 -
5.2.4 參考彎矩應變與剪應變之動態力量識別結果 ....................................... - 100 -
5.3 三維板元素結構模擬 ...................................................................................... - 108 -
5.3.1 單跨板元素結構分析模型 ....................................................................... - 108 -
5.3.2 板元素參數 ............................................................................................... - 110 -
5.3.3 移動力量加載形式 ................................................................................... - 111 -
5.3.4 速度識別結果 ........................................................................................... - 112 -
5.3.5 動態力量識別結果 ................................................................................... - 116 -
第六章 實驗室試驗................................................................................................... - 118 -
6.1 實驗室試驗試體與儀器設備 .......................................................................... - 118 -
6.2 自然振動頻率量測 .......................................................................................... - 124 -
6.3 彎曲剛度識別 .................................................................................................. - 125 -
6.4 阻尼比識別 ...................................................................................................... - 126 -
6.5 單軸荷重識別 .................................................................................................. - 127 -
VII
6.5.1 單軸荷重識別結果 ................................................................................... - 128 -
6.6 雙軸荷重識別 .................................................................................................. - 134 -
6.6.1 雙軸荷重識別結果 ................................................................................... - 135 -
6.6.2 識別結果曲線平化度控制 ....................................................................... - 150 -
6.7 小結 .................................................................................................................. - 155 -
第七章 結論與建議................................................................................................... - 156 -
7.1 結論 .................................................................................................................. - 156 -
7.2 建議 .................................................................................................................. - 157 -
參考文獻..................................................................................................................... - 159 -
附錄 A ........................................................................................................................ - 163 -
附錄 B ........................................................................................................................ - 165 -
參考文獻 Bellman, R. & Dreyfus, S. E., (1962). Applied DynamicP programming. The
RAND Corporation Published, 1962, Princeton University Press.
[2] Bellman, R., (1995). Introduce to Matrix Analysis. Society for Industrial and
Applied Mathematics. Philadelphia 1995.
[3] Cadzow, James. A., (1973). Discrete-Time System, An Introduction with
Interdisciplinary Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey
1973.
[4] Caines, Peter E., (1988). Linear Stochastic Systems. John Wiley & Sons, Inc.
[5] Cheung, Y. K. (1972). Finite Strip Method in Structural Analysis. Pergamon
international library.
[6] Craig, Roy R. (1981). Structural dynamics : an introduction to computer methods.
New York : Wiley Taipei : Wei Ch’eng, c1981.
[7] González, Arturo; Rowley, C.; O’Brien, Eugene J. (2008). A General Solution to
the Identification of Moving Vehicle Forces on a Bridge. Wiley, International
Journal for Numerical Methods in Engineering, 75 (3): 335-354
[8] Hansen, P.C., (1998). Rank-Deficient and Discrete ill-posed Problems, Numerical
Aspects of Linear Inversion. Philadelphia : SIAM, c1998.
- 160 -
[9] Kalin, J., Znidaric, A., and Lavric, I., (2006) .Practical Implementation of
Nothing-On-The-Road Bridge Weigh-In-Motion System‘ 9th International
Symposium on Heavy Vehicle Weights and Dimensions.
[10] Logan, D. L., (2000). A first Course in the Finite Element Method. 3rd edition,
Wadsworth Group. Brooks/Cole.
[11] Moses, F., (1978). Weigh-in-motion system using instrumented bridges. ASCE
Journal of Transportation Engineering, 105, 233-249.
[12] O’Brien, E., Žnidarič, A., & Dempsey, A. T., (1999c). Comparison of two
independently developed bridge weigh-in-motion systems. Heavy Vehicle
Systems, Int. J. of Vehicle Design., 6(1-4), 147-162.
[13] Ojio, T., Yamada, K. & Shinkai, H., (2000). BWIM Systems using Truss Bridges,
Bridge Management Four, Edited by M.J. Ryall, G.A.R. Parker and J.E. Harding,
Thomas Telford, University of Surrey, UK, pp. 378-386.
[14] Peters, R. J., (1984). AXWAY – A System to Obtain Vehicle Axle Weights.
Proceedings of the12th ARRB Conference, 12(1): 17-29.
[15] Peters, R. J., (1986). An unmanned and undetectable highway speed vehicle
weighing system. Proceedings 13th ARRB Conference. 13(6): 70-83.
[16] Przemineiecki, J. S., (1968). Theory of Matrix Structural Analysis. 1st Edition
McGraw Hill Book Co. New York, McGraw Hill Inc.
- 161 -
[17] Ralbovsky Marian, Cristian Cremona, Bernard Enright, Eugene O’brien, Arturo
Gonzales, Aleš Žnidarič, Aljoša Šajna (2009). Recommendations on the use of
results of monitoring on bridge safety assessment and maintenance.
ARCHES-22-DE10.
[18] Reddy, J. N. (1984). An Introduction to the Finite Element Method. 1th Edition,
McGraw Hill Inc.
[19] Trujillo, D. M., (1977). The direct numerical integration for linear matrix
differential equations using Pade approximations. International Journal for
Numerical Methods in Engineering.
[20] Trujillo, D. M., & Busby, H. R., (1992). Practical Inverse Analysis in Engineering.
New York: CRC Press.
[21] Tikhonov, A. N., & Aresenin, V. Y., (1977). Solution of ill-posed Problems. New
York: John Wiley & Sons.
[22] Žnidarič, A. & Baumgärtner, W., (1998). ‘Bridge Weigh-In-Motion Systems – An
Overview’, in Pre-proceedings of the 2nd European Conference on
Weigh-In-Motion, Eds. E.J. O’Brien &B. Jacob, Lisbon, Portugal, pp. 139-152,
1998.
[23] Zienkiewicz, O. C. (1971). The Finite Element Method in Engineering Science.
William Clowes & Sons, limited, London, Beccles and Colchester.
- 162 -
[24] Zienkiewicz, O. C., & Taylor, R. L. (2000) The Finite Element Method. 5th Edition,
Butterworth-Heinemann.
[25] 陳宥廷、王仲宇。橋梁動態荷種識別理論與試驗,國立中央大學土木工程學
系(2011)。
[26] 洪國揚、吳重雄。使用有限元素法探討加肋薄殼的自由振動問題,國立成功
大學土木工程學系(2003)。
指導教授 王仲宇 審核日期 2013-5-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明