博碩士論文 985401007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:154 、訪客IP:3.14.83.223
姓名 柯律廷(Lu-Ting Ko)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 數位浮水印應用之設計及最佳化
(Design and Optimization for Digital Watermarking Applications)
相關論文
★ E2T-iSEE:應用於事件與情感狀態轉移排程器之編輯★ “偶”:具情感之球型機器人
★ 陣列區塊電容產生器於製程設計套件之評量★ 應用於數位家庭整合計畫影像傳輸子系統之設計考量與實現
★ LED 背光模組靜電放電路徑★ 電阻串連式連續參考值產生器於製程設計套件之評量
★ 短篇故事分類與敘述★ 延伸考慮製程參數相關性之類比電路階層式變異數分析器
★ 以電子電路觀點對田口式惠斯登電橋模擬實例的再分析★ 應用於交換電容ΔΣ調變電路之電容排列良率自動化擺置平台
★ 陣列MiM電容的自動化佈局★ 陣列MiM電容的平衡接點之通道繞線法
★ 氣象資訊達人★ 嵌入式WHDVI多核心Forth微控制器之設計
★ 應用於電容陣列區塊之維持比值良率的通道繞線法★ 使用於矽穿孔耦合分析之垂直十字鏈基板結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在此研究中,主題在於數位影像的資訊藏匿技術之研究。此篇論文包含了三個主要部分。第一部分中,我們研究基於量化索引值調變(Quantization index modulation)之資訊藏匿技術。期間發展出一個新型巢狀結構的量化索引值調變之可逆式資訊藏匿技術。為了要能夠在解碼端重建原圖,在嵌入浮水印過程中產生的量化誤差也一併編碼進浮水印中。除此之外,巢狀結構也能夠提供更多的浮水印容量。在我們的實驗中,跟傳統的方法比較起來,雙層巢狀結構可以提供兩倍的資訊藏匿量。接著我們考慮發展更高透明度的演算法,而開發出一種基於離散分數餘弦變換(Fractional discrete cosine transform)的演算法。此項技術將原圖和藏有浮水印之原圖融合為一;在解碼端也可以用逆向演算法完全分離兩張影像。在我們的實驗中,跟傳統的方法比較起來,透明度提升了21.34%。
第二部分中,我們的目標在於基於像素值差(Pixel difference)和直方圖修正(Histogram modification)之資訊藏匿技術。由於鄰近哈爾小波(Haar wavetlet)係數的相似性,大部分鄰近係數的差值都接近於零。根據這種特性而對現今一種演算法提出改進的方式。在我們的實驗中跟先前的方法比較起來,透明度提升了27.78%,並且多藏匿了48.48% 位元的資訊。在第三部分中,恰可察覺失真度(Just noticeable distortion)模型之運算速度是研究的主題。我們研究了傳統的恰可察覺失真模型,並提出了對於計算複雜度的改善,其運算速度提高了六倍。
摘要(英) In this research, we focus on information hiding in digital images. The dissertation consists of three major parts. In the first part, we investigate information hiding algorithm based on quantization index modulation (QIM). A novel quantization index modulation based reversible information hiding algorithm with a nest-structure has been developed. In order to reconstruct the host image in the decoder, the quantization errors caused by QIM process are normalized and coded into the watermarked image. Besides, the capacity can be increased by taking advantage of the proposed nest-structure. Compares with the conventional QIM watermarking, a two-level nested QIM watermarking can hide 2 times secret bits in our experimental results. Next, we consider achieving a higher transparency algorithm. An algorithm based on the fractional discrete cosine transform is developed. This technique merges the host image and QIM watermarked image into one, and the host image can be exactly reconstructed by using the inverse algorithm. Experiments show that the transparency of the FDCT watermarked image can be increased. Compares with the conventional QIM watermarking, the PSNR of four test watermarked image is increased by 21.34%.
In the second part, we aim at information hiding by pixel difference and histogram modification. Due to the similarity of neighbor Haar wavelet coefficient’s value, most difference between pairs of adjacent coefficients are close to zero. An improvement for an existed technique based on this characteristic has been made. Compares with the previous method, the PSNR of the six test watermarked images is increased by 27.78%, and 48.48% more secret bits hidden inside.
In the third part, the computation complexity of just noticeable distortion model is the topic. We studied the conventional just noticeable distortion model and make an improvement in computation speed; the speed is about 6 times faster than that of the conventional JND model.
關鍵字(中) ★ 可逆式浮水印
★ 量化索引值調變
★ 離散餘弦變換
★ 離散小波變換
★ 直方圖修正
★ 恰可察覺失真度
關鍵字(英) ★ reversible watermarking
★ quantization index modulation
★ discrete cosine transform
★ discrete wavelet transform
★ histogram modification
★ just noticeable distortion
論文目次 摘要 I
Abstract II
Acknowledgements III
Table of Contents IV
List of Figures VII
List of Tables IX
Chapter I Introduction 1
1.1 Significance of the Research 1
1.2 Contributions of the Research 3
1.2.1 Information Hiding Based on Quantization Index Modulation 4
1.2.2 Information Hiding Based by Histogram Modification 5
1.2.3 Just Noticeable Distortion 6
1.3 Organization of this Dissertation 7
Chapter II Overview of Digital Watermarking 8
2.1 Information Hiding in Images 8
2.2 Applications of Digital Watermarking 11
2.2.1 Copyright Protection 11
2.2.2 Transaction Tracking 12
2.2.3 Content Authentication 13
2.2.4 Broadcast Monitoring 13
2.2.5 Usage Control 13
2.2.6 Annotation 14
2.3 Requirements of Digital Watermarking 14
2.2.1 Perceptibility 15
2.2.2 Robustness 15
2.2.3 Capacity 16
2.2.4 False Positive Rate 16
2.2.5 Reversible 17
2.2.6 Cost 17
2.2.7 Security 18
2.4 Approaches of Digital Watermarking 18
2.2.1 Reversible Information Hiding Based on Integer Transform 19
2.2.2 Reversible Information Hiding by Data Compression 19
2.2.3 Reversible Information Hiding Based on Histogram Modification 20
2.2.4 Reversible Information Hiding by Prediction of Pixel Values 21
Chapter III Information Hiding Based on Quantization Index Modulation 22
3.1 Review of Quantization Index Modulation 22
3.2 The Nested Quantization Index Modulation for Reversible Watermarking 25
3.2.1 The Algorithm of Nested Quantization Index Modulation 25
3.2.2 Experimental Results on Medical Images 29
3.3 Fractional Discrete Cosine Transform Based Reversible Watermarking 32
3.3.1 Review of Type-I Fractional Discrete Cosine Transform and Half Discrete Cosine Transform 32
3.3.2 The Fractional Discrete Cosine Transform Based Watermarking 36
3.3.3 Experimental Results on Medical Images 38
Chapter IV Information Hiding by Histogram Modification 42
4.1 Review of Reversible Watermarking Based on Multilevel Histogram Modification and Sequential Recovery 42
4.2 The Histogram Modification and Wavelet Transform for Reversible Watermarking 44
4.2.1 Review of Haar Discrete Wavelet Transform 45
4.2.2 The Algorithm of Histogram Modification and Wavelet Transform for Reversible Watermarking 47
4.2.3 Experimental results 51
Chapter V Just Noticeable Distortion 56
5.1 Review of the Full-Band Just Noticeable Distortion Model 57
5.2 Haar Wavelet Based Just Noticeable Distortion Model 58
5.2.1 The Algorithm of Haar Wavelet Based Just Noticeable Distortion Model 58
5.2.2 Modification of the DWT-based JND Model 60
Chapter VI Conclusion 65
Reference 67
參考文獻 [1] F. Mintzer, J. Lotspiech, and N. Morimoto, “Safeguarding digital library contents and users: Digital watermarking,” D-Lib Mag., Dec. 1997.
[2] L. T. Ko, J. E. Chen, Y. S. Shieh, H. C. Hsin, and T. Y. Sung, “Nested Quantization Index Modulation for Reversible Watermarking and Its Application to Healthcare Information Management Systems,” Computational and Mathematical Methods in Medicine, vol.2102, Article ID.: 839161, 8 pages, 2012.
[3] L. T. Ko, J. E. Chen, Y. S. Shieh, M. Scalia, and T. Y. Sung, "A Novel Fractional-Discrete-Cosine-Transform-Based Reversible Watermarking for Healthcare Information Management Systems," Mathematical Problems in Engineering, vol. 2012, Article ID.: 757018, 17 pages, 2012.
[4] Y. S. Juang, L. T. Ko, J. E. Chen, Y. S. Shieh, T. Y. Sung and H. C. Hsin, "Histogram Modification and Wavelet Transform for High Performance Watermarking," Mathematical Problems in Engineering, vol. 2012, Article ID 164869, 14 pages, 2012.
[5] L. T. Ko, J. E. Chen, H. C. Hsin, Y. S. Shieh and T. Y. Sung, "Haar wavelet based just noticeable distortion model for transparent watermark," Mathematical Problems in Engineering, vol. 2012, Article ID.: 635738, 14 pages, 2012.
[6] B. Chen and G. W. Wornell, “Quantization index modulation: A class of provably good methods for digital watermarking and information embedding,” IEEE Trans. Information Theory, vol.47, no.4 pp.1423-1443, May 2001.
[7] Z. Zhao, H. Luo, Z. M. Lu and J. S. Pan, “Reversible data hiding based on multilevel histogram modification and sequential recovery,” International Journal of Electronics and Communications (AEÜ), Vol. 65, no. 10, Pages 814–826, Oct. 2011
[8] Z. Ni, Y. Shi, N. Ansari and W. Su, “Reversible data hiding,” In Proc. IEEE ISCAS’03, vol. 2. 2003. pp. II-912–915.
[9] Y. C. Li, C. M. Yeh and C. C. Chang, “Data hiding based on the similarity between neighboring pixels with reversibility,” Digital Signal Processing, Vol. 20, no. 4, Pages 1116–1128, July 2010
[10] C. H. Chou, Y. C. Li, "A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile," IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 6, pp. 467–476, Mar. 1995.
[11] C. Reidy, "Knocking off the knockoff," The Boston Globe, page D1, Nov. 17, 2000
[12] G. B. Rhoads, "Steganography system," United States Patent, 5,850,481, 1998.
[13] http://www.currency.cbc.gov.tw
[14] I. Cox, M. Miller, J. Bloom, J. Fridrich and T. Kalker, Digital Watermarking and Steganography, 2nd ed, San Francisco, CA: Morgan Kaufmann Publishers, 2008
[15] C. S. Lu, Multimedia Security, Hershey, PA: Idea Group Publishing, 2004
[16] N. F. Johnson, Z. duric and S. Jajodia, Information Hiding, London: Kluwer Academic Publishers, 2001
[17] S. Katzenbeisser and F. A. P. Petitcolas, Information Hidining, London: Artech House Publishers, 2000
[18] J. S. Pan, H. C. Huang and L. C. Jain, Intelligent Watermarking Techniques, Singapore: World Scientific, 2004
[19] I. J. Cox, J. Kilian, F. T. Leighton and T. Shamoon, “Secure spread spectrum watermarking for multimedia,” IEEE Trans. Image Process., vol.6, no. 12, pp. 1673-1687, Dec. 1997.
[20] M. D. Swanson, M. Kobayashi and A. H. Tewfik, “Multimedia data embedding and watermarking technologies,” Proc. IEEE, vol. 86, no.6, pp. 1064-1087, Jun. 1998.
[21] M. Barni, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Trans. Image Process., vol. 10, no. 5, pp. 783-791, May 2001.
[22] G. C. Langelaar, I. Setyawan, and R. L. Lagendijk, “Watermarking digital image and video data. A state-of-the-art overview,” IEEE Signal Process. Mag., vol. 17, no. 5, pp. 20–46, Sep. 2000.
[23] C. I. Podilchuk and E. J. Delp, “Digital watermarking: Algorithms and applications,” IEEE Signal Process. Mag., vol. 18, no. 4, pp. 33–46, Jul. 2001.
[24] C. S. Lu and H. Y. M. Liao, “Multipurpose watermarking for image authentication and protection,” IEEE Trans. Image Proc., vol. 10, no. 10, pp. 1579–1592, Oct. 2001.
[25] M. Celik, G. Sharma, A. Tekalp, and E. Saber, “Lossless generalized-LSB data embedding,” IEEE Trans. Image Process., vol. 14, no. 2, pp. 253–266, Feb. 2005.
[26] J. Tian, “Reversible watermarking using a difference expansion,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 890–896, Aug. 2003.
[27] M. Van der Veen, F. Bruekers, A. Van Leest, and S. Cavin, “High capacity reversible watermarking for audio,” Proc. SPIE, vol. 5020, no.1, pp. 1–11, Jan. 2003.
[28] R. Du and J. Fridrich, “Lossless authentication of MPEG-2 video,” in Proc. IEEE Int. Conf. Image Process., vol. 2. Dec. 2002, pp. 893–896.
[29] J. Dittmann and O. Benedens, “Invertible authentication for 3-D-meshes,” Proc. SPIE, vol. 5020, no. 653, pp. 653–664, Jan. 2003.
[30] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Trans. Circuits Syst. Video Technol, vol. 13, no. 8, pp. 890–896, Aug. 2003.
[31] A. M. Alattar, “Reversible watermark using difference expansion of triplets,” in Proc. IEEE ICIP, Barcelona, Spain, Sep. 2003, vol. 1, pp. 501–504.
[32] A. M. Alattar, “Reversible watermark using difference expansion of quads,” in Proc. ICASSP, 2004, vol. 3, pp. 377–380.
[33] A. M. Alattar, “Reversible watermark using the difference expansion of a generalized integer transform,” IEEE Trans. Image Process., vol. 13, no. 8, pp. 1147–1156, Aug. 2004.
[34] B. Yang, M. Schmucker, W. Funk, C. Busch, and S. Sun, “Integer DCT-based reversible watermarking for images using companding technique,” in Proc. SPIE, Security, Steganography, and Watermarking of Multimedia Contents, San Jose, CA, Jan. 2004, pp. 405–415.
[35] G. Xuan, J. Chen, J. Zhu, Y. Q. Shi, Z. Ni, and W. Su, “Lossless data hiding based on integer wavelet transform,” in Proc. MMSP, St. Thomas, Virgin Islands, Dec. 2002, pp. 312–315.
[36] G. Xuan, C. Yang, Y. Q. Shi, and Z. Ni, “High capacity lossless data hiding algorithms,” in Proc. ISCAS, Vancouver, BC, Canada, May 2004.
[37] G. Xuan, Y. Q. Shi, Q. Yao, Z. Ni, C. Yang, J. Gao, and P. Chai, “Lossless data hiding using histogram shifting method based on integer wavelets,” presented at the LNCS, Int. Workshop Digital Watermarking, Jeju Island, Korea, Nov. 2006.
[38] S. Lee, C. D. Yoo and T. Kalker, "Reversible Image Watermarking Based on Integer-to-Integer Wavelet Transform," IEEE Trans. Inf. Forensics Sec., vol. 2, no. 3, pp. 321–330, Sep. 2007.
[39] X. Wang, X. Li, B. Yang and Z. Guo, "Efficient Generalized Integer Transform for Reversible Watermarking," IEEE Signal Process. Letters, vol. 17, no. 6, pp. 567–570, June 2010.
[40] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber,“Lossless generalized-lsb data embedding,” IEEE Trans. Image Process., vol. 14, no. 2, pp. 253–266, Feb. 2005.
[41] J. Fridrich, M. Goljan, Q. Chen, and V. Pathak, "Lossless data embedding with file size preservation," in SPIE Proceedings of EI, San Jose, Jan. 2004.
[42] J. Fridrich, M. Goljan, and R. Du, "Lossless data embedding-new paradigm in digital watermarking," EURASIP Journal of Signal Processing, vol. 2002, no. 2, pp. 185–196, Feb. 2002.
[43] C. D. Vleeschouwer, J. E. Delaigle, and B. Macq, "Circular interpretation of histogram for reversible watermarking," in Proceedings of the IEEE 4th Workshop on Multimedia Signal Processing, pp. 345–350, France, Oct. 2001.
[44] C. D. Vleeschouwer, J. F. Delaigle, and B. Macq, "Circular interpretation of bijective transformations in lossless watermarking for media asset management," IEEE Trans. Multimedia, vol. 5, no. 1, pp. 97–105, Mar. 2003.
[45] C. C. Chang, W. L. Tai, and M. H. Lin, "A reversible data hiding scheme with modified side match vector quantization," in Proceedings of the International Conference on Advanced Information Networking and Applications, vol. 1, pp. 947–952, Taiwan, Mar. 2005.
[46] W. L. Tai, C. M. Yeh, and C. C. Chang, "Reversible Data Hiding Based on Histogram Modification of Pixel Differences," IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 6, pp. 906–910, June 2009.
[47] G. Coatreieux, W. Pan, N. Cuppens-Boulahia, F. Cuppens and C. Roux, "Reversible Watermarking Based on Invariant Image Classification and Dynamic Histogram Shifting," IEEE Trans. Inf. Forensics Sec., vol. 8, no. 1, pp. 111–120, Jan 2013.
[48] X. Gao, L. An, Y. Yuan, D. Tao, and X. Li, "Lossless data embedding using generalized statistical quantity histogram," IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 8, pp. 1061–1070, Aug. 2011.
[49] L. An, X. Gao, X. Li, D. Tao, C. Deng and J. Li, "Robust Reversible Watermarking via Clustering and Enhanced Pixel-Wise Masking," IEEE Trans. Image Process., vol. 21, no. 8, pp. 3598–3611, Aug. 2012.
[50] L, Luo, Z. Chen, M. Chen, X. Zeng and Z. Xiong, "Reversible image watermarking using interpolation technique," IEEE Trans. Inf. Forensics Sec., vol. 5, no. 1. pp. 187–193, May, 2010.
[51] K. S. Kim, M. J. Lee, H. Y. Lee and H. K. Lee, "Reversible data hiding exploiting spatial correlation between sub-sampled images," Pattern Recognit., vol. 42, no. 11, pp. 3083–3096, 2009.
[52] M. Chen, Z. Chen, X. Zeng and Z. Xiong, "Model Order Selection in Reversible Image Watermarking," IEEE J. Selected Topic in Signal Process., vol. 4, no. 3, June 2010.
[53] D. Coltuc, "Low Distortion Transform for ReversibleWatermarking," IEEE Trans. Image Process., vol. 21, no. 1, pp. 412-417, Jan 2012.
[54] V. Sachnev, H. J. Kim, J. Nam, S. Suresh and Y. Q. Shi, "Reversible Watermarking Algorithm Using Sorting and Prediction," IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 7, pp. 989–999, July 2009.
[55] K. R. Rao, P. Yip, Discrete cosine transform: algorithms, advantages, applications. New York: Academic, 1990.
[56] S. C. Pei and M. H. Yeh, “The discrete fractional cosine and sine transforms,” IEEE Trans. Signal Processing, vol.49, no.6, pp.1198-1207, June 2001.
[57] G. Cariolaro, T. Erseghe and P. Kraniauskas, “The fractional discrete cosine transform,” IEEE Trans. Signal Process., vol.50, no.4, pp.902-911, April 2002.
[58] K. Maharatna, A. S. Dhar, S. Banerjee, “A VLSI array architecture for realization of DFT, DHT, DCT and DST,” Signal Processing, vol.81, no.9, pp. 1813–1822, 2001
[59] T. Y. Sung, “Memory-efficient and high-speed split-radix FFT/IFFT processor based on pipelined CORDIC rotations,” IEE Proc. – Vision, Image and Signal Processing, Vol.53, No.4, 405-410, 2006
[60] M. Kutter, S. Winkler, “A vision-based masking model for spread spectrum image watermarking,” IEEE Trans. Image Process., vol. 11, no. 1, pp. 16–25, Jan. 2002.
[61] Q. Li, C. Yuan, Y. Z. Zhong, “Adaptive DWT-SVD domain image watermarking using human visual model,” Proc. 9th Int. Conf. Adv. Commun. Tech., vol. 3, pp. 1947–1951, 2007.
[62] F. Autrusseau, P. L. Callet, “A robust image watermarking technique based on quantization noise visibility thresholds,” Signal Process., vol. 87, no. 6, pp. 1363–1383, Jun. 2007.
[63] H. S. Moon, T. You, M. H. Sohn, H. S. Kim, D. S. Jang, “Expert system for low frequency adaptive image watermarking: Using psychological experiments on human image perception,” Expert Syst. Appl.,vol. 32, no. 2, pp. 674–686, Feb. 2007.
[64] H. Qi, D. Zheng, J. Zhao, “Human visual system based adaptive digital image watermarking,” Signal Process., vol. 88, no. 1, pp. 174–188, Jan. 2008.
[65] A. Koz, A. A. Alatan, “Oblivious spatio-temporal watermarking of digital video by exploiting the human visual system,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 3, pp. 326–337, Mar. 2008.
[66] S. Y. Chen, Y. F. Li, J. W. Zhang, “Vision processing for real time 3D data acquisition based on coded structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp.167-176, Feb. 2008.
[67] S. Y. Chen, H. Tong, Z. Wang, S. Liu, M. Li, B. Zhang, “Improved generalized belief propagation for vision processing,” Mathematical Problems in Engineering, vol. 2011, 2011, doi:10.1155/2011/416963.
[68] S. Y. Chen, Q. Guan, “Parametric shape representation by a deformable NURBS model for cardiac functional measurements,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 3, pp.480-487, Mar. 2011.
[69] N. Jayant, “Signal compression: Technology targets and research directions,” IEEE J. Select. Areas Comm., vol. 10, pp. 314-323, June 1992.
[70] N. Jayant, J. Johnston, R. Safranek, “Signal compression based on models of human perception,” Proc. IEEE, vol. 81, pp. 1385-1422, Oct. 1993.
[71] P. Moon, D. E. Spencer, “The visual effect of non-uniform surrounds,” J. Opt. Soc. Amer., vol. 35, pp. 233-248, Mar. 1945.
[72] A. K. Jain, Fundamentals of digital image processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.
[73] X. Yang, W. Lin, “Motion-compensated residue preprocessing in video coding based on just noticeable distortion profile”, IEEE Trans. on Circuits and System for Video Technology, no.6, vol.15, pp.742-752, June 2005.
[74] J. Pandel, “Variable bit-rate image sequence coding with adaptive quantization,” Signal Processing: Image Comm., vol. 3, pp. 123-128, 1991.
[75] B. Gird, “Psychovisual aspects of image communication,” Signal Process., vol. 28, no 3, pp. 239-251, Sept. 1992.
[76] C. H. Chou, Y. C. Li, "A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile," IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 6, pp. 467–476, Mar. 1995.
指導教授 陳竹一(Jwu-E Chen) 審核日期 2013-5-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明