參考文獻 |
1. Landles, C.; Bates, G. P., Huntingtin and the molecular pathogenesis of Huntington’s
disease. Fourth in molecular medicine review series. EMBO Rep 2004, 5 (10), 958-63.
2. Nekooki-Machida, Y.; Kurosawa, M.; Nukina, N.; Ito, K.; Oda, T.; Tanaka, M., Distinct
conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different
cytotoxicity. Proc Natl Acad Sci U S A 2009, 106 (24), 9679-84.
3. Cattaneo, E.; Zuccato, C.; Tartari, M., Normal huntingtin function: an alternative
approach to Huntington’s disease. Nature reviews. Neuroscience 2005, 6 (12), 919-30.
4. Arrasate, M.; Finkbeiner, S., Protein aggregates in Huntington’s disease. Exp Neurol
2012, 238 (1), 1-11.
5. Hollenbach, B.; Scherzinger, E.; Schweiger, K.; R. Lurz, H. L.; Wanker, E. E.,
Aggregation of truncated GST±HD exon 1 fusion proteins containing normal range and
expanded glutamine repeats. Phil Trans R Soc Lond B 1999, 354, 991-994.
6. Zhang, Q. C.; Yeh, T. L.; Leyva, A.; Frank, L. G.; Miller, J.; Kim, Y. E.; Langen, R.;
Finkbeiner, S.; Amzel, M. L.; Ross, C. A.; Poirier, M. A., A compact beta model of
huntingtin toxicity. J Biol Chem 2011, 286 (10), 8188-96.
7. Dehay, B.; Bertolotti, A., Critical role of the proline-rich region in Huntingtin for
aggregation and cytotoxicity in yeast. J Biol Chem 2006, 281 (47), 35608-15.
8. Southwell, A. L.; Khoshnan, A.; Dunn, D. E.; Bugg, C. W.; Lo, D. C.; Patterson, P. H.,
Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover
and reduce neurotoxicity. J Neurosci 2008, 28 (36), 9013-20.
9. Khare, S.; Ding, F.; Gwanmesia, K.; Dokholyan, N., Molecular origin of polyglutamine
aggregation in neurodegenerative diseases. PLoS Computational Biology 2005, preprint
(2005), e30.
10. Poirier, M. A.; Li, H.; Macosko, J.; Cai, S.; Amzel, M.; Ross, C. A., Huntingtin spheroids
and protofibrils as precursors in polyglutamine fibrilization. J Biol Chem 2002, 277 (43),
41032-7.
11. Iuchi, S.; Hoffner, G.; Verbeke, P.; Djian, P.; Green, H., Oligomeric and polymeric
aggregates formed by proteins containing expanded polyglutamine. Proc Natl Acad Sci
U S A 2003, 100 (5), 2409-14.
12. Ross, C. A.; Poirier, M. A., Protein aggregation and neurodegenerative disease. Nat Med
2004, 10 Suppl, S10-7.
13. 蔡惠旭, 分子觀點下的蛋白質摺疊、錯誤摺疊及其聚集. J Chin Chem Soc 2005, 63
(4), 601-612.
14. Sipe, J. D.; Cohen, A. S., Review: history of the amyloid fibril. J Struct Biol 2000, 130
(2-3), 88-98.
15. Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid
fibrils. Biochim Biophys Acta 2010, 1804 (7), 1405-12.
16. Eisert, R.; Felau, L.; Brown, L. R., Methods for enhancing the accuracy and
reproducibility of Congo red and thioflavin T assays. Anal Biochem 2006, 353 (1),
144-6.
17. Dzwolak, W.; Pecul, M., Chiral bias of amyloid fibrils revealed by the twisted
conformation of Thioflavin T: an induced circular dichroism/DFT study. FEBS Lett 2005,
579 (29), 6601-3.
18. Kuznetsova, I. M.; Sulatskaya, A. I.; Uversky, V. N.; Turoverov, K. K., A new trend in
the experimental methodology for the analysis of the thioflavin T binding to amyloid
fibrils. Mol Neurobiol 2012, 45 (3), 488-98.
19. Kubota, H.; Kitamura, A.; Nagata, K., Analyzing the aggregation of
polyglutamine-expansion proteins and its modulation by molecular chaperones. Methods
2011, 53 (3), 267-74.
20. Ye, C.-F.; Li, H., HSP40 Ameliorates Impairment of Insulin Secretion by Inhibiting
Huntingtin Aggregation in a HD Pancreatic β Cell Model. Biosci Biotechnol Biochem
2009, 73 (8), 1787-1792.
21. Guzhova, I. V.; Lazarev, V. F.; Kaznacheeva, A. V.; Ippolitova, M. V.; Muronetz, V. I.;
Kinev, A. V.; Margulis, B. A., Novel mechanism of Hsp70 chaperone-mediated
prevention of polyglutamine aggregates in a cellular model of huntington disease. Hum
Mol Genet 2011, 20 (20), 3953-63.
22. Behrends, C.; Langer, C. A.; Boteva, R.; Bottcher, U. M.; Stemp, M. J.; Schaffar, G.;
Rao, B. V.; Giese, A.; Kretzschmar, H.; Siegers, K.; Hartl, F. U., Chaperonin TRiC
promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell
2006, 23 (6), 887-97.
23. Sakahira, H.; Breuer, P.; Hayer-Hartl, M. K.; Hartl, F. U., Molecular chaperones as
modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci U S A
2002, 99 Suppl 4, 16412-8.
24. Chiang, M.-C.; Juo, C.-G.; Chang, H.-H.; Chen, H.-M.; Yi, E. C.; Chern, Y., Systematic
Uncovering of Multiple Pathways Underlying the Pathology of Huntington Disease by
an Acid-cleavable Isotope-coded Affinity Tag Approach. Mol Cell Proteomics 2007, 6,
781-797.
25. CAO, W.; KONSOLAKI, M., FKBP immunophilins and Alzheimer’s disease: A
chaperoned affair. J Biosci 2011, 63 (3), 493–498.
26. Suzuki, M.; Nagai, Y.; Wada, K.; Koike, T., Calcium leak through ryanodine receptor is
involved in neuronal death induced by mutant huntingtin. Biochem Biophys Res Commun
2012, 429 (1-2), 18-23.
27. Kang, C. B.; Hong, Y.; Dhe-Paganon, S.; Yoon, H. S., FKBP family proteins:
immunophilins with versatile biological functions. Neurosignals 2008, 16 (4), 318-25.
28. Jakob, R. P.; Zoldak, G.; Aumuller, T.; Schmid, F. X., Chaperone domains convert prolyl
isomerases into generic catalysts of protein folding. Proc Natl Acad Sci U S A 2009, 106
(48), 20282-7.
29. Vogtherr, M.; Jacobs, D. M.; Parac, T. N.; Maurer, M.; Pahl, A.; Saxena, K.; Rüterjans,
H.; Griesinger, C.; Fiebig, K. M., NMR Solution Structure and Dynamics of the
Peptidyl-prolyl cis–trans Isomerase Domain of the Trigger Factor from Mycoplasma
genitalium Compared to FK506-binding Protein. J Mol Biol 2002, 318 (4), 1097-1115.
30. O’Donnell, C. W.; Lis, M., The Trigger Factor Chaperone. 2006.
31. Merz, F.; Hoffmann, A.; Rutkowska, A.; Zachmann-Brand, B.; Bukau, B.; Deuerling, E.,
The C-terminal domain of Escherichia coli trigger factor represents the central module of
its chaperone activity. J Biol Chem 2006, 281 (42), 31963-71.
32. Liu, C. P.; Perrett, S.; Zhou, J. M., Dimeric trigger factor stably binds folding-competent
intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow
refolding. J Biol Chem 2005, 280 (14), 13315-20.
33. NISHIHARA, K.; KANEMORI, M.; YANAGI, H.; YURA, T., Overexpression of
Trigger Factor Prevents Aggregation of Recombinant Proteins in Escherichia coli. Appl
Environ Microbiol 2000, 66 (3), 884-889.
34. Guan, K.; Dixon, J. E., Eukaryotic Proteins Expressed in Escherichia coli:An Improved
Thrombin Cleavage and Purification Procedure of Fusion Proteins with Glutathione
S-Transferase. Anal Biochem 1991, 192, 262-267
35. Purbey, P. K.; Jayakumar, P. C.; Deepalakshmi, P. D.; Patole1, M. S.; Galande, S., GST
fusion vector with caspase-6 cleavage site for removal of fusion tag during column
purification. BioTechniques 2005, 38 (3), 360-366.
36. Lin, F.; Wu, J.; Wang, Y.; Qin, Z., Huntingtin Cleavage Induced by Thrombin In Vitro.
Acta Biochim Biophys Sin (Shanghai) 2007, 39 (1).
37. Nucifora, L. G.; Burke, K. A.; Feng, X.; Arbez, N.; Zhu, S.; Miller, J.; Yang, G.;
Ratovitski, T.; Delannoy, M.; Muchowski, P. J.; Finkbeiner, S.; Legleiter, J.; Ross, C. A.;
Poirier, M. A., Identification of novel potentially toxic oligomers formed in vitro from
mammalian-derived expanded huntingtin exon-1 protein. J Biol Chem 2012, 287 (19),
16017-28.
38. Langbehn, D. R.; Hayden, M. R.; Paulsen, J. S., CAG-repeat length and the age of onset
in Huntington disease (HD): a review and validation study of statistical approaches. Am J
Med Genet B Neuropsychiatr Genet 2010, 153B (2), 397-408.
39. Heiser, V.; Engemann, S.; Brocker, W.; Dunkel, I.; Boeddrich, A.; Waelter, S.; Nordhoff,
E.; Lurz, R.; Schugardt, N.; Rautenberg, S.; Herhaus, C.; Barnickel, G.; Bottcher, H.;
Lehrach, H.; Wanker, E. E., Identification of benzothiazoles as potential polyglutamine
aggregation inhibitors of Huntington’s disease by using an automated filter retardation
assay. Proc Natl Acad Sci U S A 2002, 99 Suppl 4, 16400-6.
40. 生物電子顯微鏡學. 行政院國家科學委員會精密儀器發展中心編印.
41. Hudson, S. A.; Ecroyd, H.; Kee, T. W.; Carver, J. A., The thioflavin T fluorescence assay
for amyloid fibril detection can be biased by the presence of exogenous compounds.
Febs J 2009, 276 (20), 5960-72.
42. Hsu, J. C.; Chen, E. H.; Snoeberger, R. C., 3rd; Luh, F. Y.; Lim, T. S.; Hsu, C. P.; Chen,
R. P., Thioflavin T and its photoirradiative derivatives: exploring their spectroscopic
properties in the absence and presence of amyloid fibrils. J Phys Chem B 2013, 117 (13),
3459-68.
43. Maiti, N. C.; Apetri, M. M.; Zagorski, M. G.; Carey, P. R.; Anderson, V. E., Raman
Spectroscopic Characterization of Secondary Structure in Natively Unfolded Proteins:
r-Synuclein. J Am Chem Soc 2004, 126, 2399-2408.
44. Wacker, J. L.; Zareie, M. H.; Fong, H.; Sarikaya, M.; Muchowski, P. J., Hsp70 and
Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by
partitioning monomer. Nat Struct Mol Biol 2004, 11 (12), 1215-22.
45. Jayaraman, M.; Kodali, R.; Sahoo, B.; Thakur, A. K.; Mayasundari, A.; Mishra, R.;
Peterson, C. B.; Wetzel, R., Slow amyloid nucleation via alpha-helix-rich oligomeric
intermediates in short polyglutamine-containing huntingtin fragments. J Mol Biol 2012,
415 (5), 881-99.
46. Wagner, A. S., Early conformational changes control spontaneous polyQ-mediated
huntingtin polymerization. 2011, 117頁.
47. Gerard, M.; Deleersnijder, A.; Daniels, V.; Schreurs, S.; Munck, S.; Reumers, V.; Pottel,
H.; Engelborghs, Y.; Van den Haute, C.; Taymans, J. M.; Debyser, Z.; Baekelandt, V.,
Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and
Parkinson’s disease-like pathology. J Neurosci 2010, 30 (7), 2454-63.
48. Lee, T. H.; Pastorino, L.; Lu, K. P., Peptidyl-prolyl cis-trans isomerase Pin1 in ageing,
cancer and Alzheimer disease. Expert Rev Mol Med 2011, 13, e21. |