博碩士論文 992206070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.21.33.186
姓名 徐喬威(Chiao-Wei Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究
(Resonant Coupling of TE Wave Incidence to Asymmetric Metal-Dielectric Multilayered Structures at Optical Frequencies)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵
★ 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較★ 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層
★ 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究★ 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧
★ 光波至混合電漿波導極化模態轉換器★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器
★ 理論探討以金屬內部光輻射為基礎之太陽能光電轉換★ 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換
★ 具耦合電漿子增強之可見光波段電漿子光偵測器★ 適用於覆晶封裝、厚度薄型化矽基光電二極體之一維光柵: 設計與分析
★ 多原子層鋁膜中電子與聲子間之散射研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究係以傳輸線理論計算與以有限時域差分法(finite-difference-time-domain method)為基礎之數值模擬,針對橫電(transverse electric, TE)極化波於光頻率範圍內入射二維「金屬-介電質」多層結構進行探討。兩者之計算結果均顯示於特定條件下具有極低反射之現象。其成因為電磁波會於高折射率材料內部形成導波模態。由導波理論可知電磁波於導波層兩介面間所累積之總相位變化,決定其是否於導波層內形成導波模態。因所累積之相位受到導波層厚度與折射率之影響,故反射率會隨著導波層厚度及折射率呈現週期性變化。除此之外,在相同結構下,入射波長越大則等效折射率越低,故形成導波模態之入射角度亦越小。此外,金屬厚度除了對TE波之反射率造成影響,亦影響反射率之角度頻譜中之半高全寬角度。金屬厚度越厚時,產生導波模態之入射角越小,且角度頻譜之半高全寬角度亦較小;反之,金屬厚度較薄時,產生導波模態所需之入射角則較接近 ,而其半高全寬角度會較大。但金屬厚度亦有其限制,若金屬厚度大於60 nm將使得電磁波無法進入導波層內部,自然亦無法形成導波模態。
摘要(英) This thesis employs the transmission line theory and a commercial software package based on Finite-Difference-Time-Domain method to investigate the transverse electric (TE) wave incidence upon two-dimensional planar metal-dielectric multilayered structures at optical frequencies. Results from both approaches show that a minimum reflectance could occur due to the resonant coupling between the incident electromagnetic wave and a guided mode in the high-index layer. From the guided-wave theory, since the phase accumulated by the wave at two boundaries in the guiding layer determines the guidance condition, the resonant coupling is largely affected by the thickness and refractive index of the high-index layer. It changes with the thickness and refractive index of the high-index layer periodically. In addition, under the same structure, since the effective index becomes smaller when the operating wavelength is increased, a smaller incident angle is required to excite the guided mode. On the other hand, metal thickness also affects the full-width-at-half-maximum (FWHM) angle of the reflectance. If the metal thickness becomes thicker, the incident angle required for the resonant coupling gets closer to the critical angle and the FWHM angle is smaller. On the contrary, the required incident angle is closer to when the thickness of the metal is decreased and the corresponding FWHM angle increases. Nevertheless, when the thickness of the metal is large than 60 nm, the TE resonant coupling vanishes.
關鍵字(中) ★ 「金屬-介電質」多層結構
★ 橫電極化波
★ 耦合共振
關鍵字(英) ★ metal-dielectric multilayered structures
★ transverse electric wave
★ resonant coupling
論文目次 中文摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與結構介紹 6
第二章 分析方法 8
2.1 傳輸線方程式 9
2.2 具負載端之傳輸線 12
2.3 TE 波與TM 波於波導內之阻抗 15
2.4 傳輸線網路應用於多層結構 18
第三章 以數值模擬為基礎之反射率計算-以單一介面為例 21
3.1 數值模擬之平面波 21
3.2 雙層介電質結構之驗證 22
3.3 介電質與具吸收材料結構之驗證 30
第四章 結果與討論 35
4.1 理論計算與數值模擬之結果比較 35
4.2 入射波長對反射率之影響 44
4.3 導波層材料對TE 波反射率之影響 47
4.4 金屬材料對反射率之影響 48
第五章 結論 52
參考文獻 53
參考文獻 [1] A. M. Fox, Optical properties of solids: Oxford University Press, 2001.
[2] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles:  The influence of size, shape, and dielectric environment," J. Phys. Chem. B, vol. 107, pp. 668-677, Dec. 2002.
[3] A. Reisinger, "Characteristics of optical guided Mmdes in lossy waveguides," Appl. Opt., vol. 12, pp. 1015-1025, May. 1973.
[4] J. N. Polky and G. L. Mitchell, "Metal-clad planar dielectric waveguide for integrated optics," J. Opt. Soc. Am., vol. 64, pp. 274-279, Mar. 1974.
[5] Y. Yamamoto, T. Kamiya, and H. Yanai, "Characteristics of optical guided modes in multilayer metal-clad planar optical guide with low-index dielectric buffer layer," IEEE J. Quantum Electron., vol. 11, pp. 729-736, Sep. 1975.
[6] T. Hosaka, K. Okamoto, and J. Noda, "Single-mode fiber-type polarizer," IEEE Trans. Microwave Theory Tech., vol. 30, pp. 1557-1560, Oct. 1982.
[7] L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, "Broadband metal/glass single-mode fibre polarisers," Electron. Lett., vol. 22, pp. 1020-1022, Sep. 1986.
[8] T. Yu and Y. Wu, "Theoretical study of metal-clad optical waveguide polarizer," IEEE J. Quantum Electron., vol. 25, pp. 1209-1213, Jun. 1989.
[9] H. Raether, "Surface plasmons on smooth and rough surfaces and on gratings," ed: Springer, 1988.
[10] P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures," Phys. Rev. B, vol. 61, pp. 10484-10503, Apr. 2000.
[11] E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, vol. 311, pp. 189-193, Jan. 2006.
[12] S. A. Maier, "Plasmonics: The promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 1671-1677, Nov. 2006.
[13] 邱國斌、蔡定平, "金屬表面電漿簡介," 物理雙月刊, vol. 28, pp. 472-485, Apr. 2006.
[14] H. Li, Z. Cao, H. Lu, and Q. Shen, "Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide," Appl. Phys. Lett., vol. 83, pp. 2757-2759, Oct. 2003.
[15] J. R. Tischler, M. S. Bradley, and V. Bulovi, "Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film," Opt. Lett., vol. 31, pp. 2045-2047, Jul. 2006.
[16] S. Dutta Gupta, "Strong-interaction-mediated critical coupling at two distinct frequencies," Opt. Lett., vol. 32, pp. 1483-1485, Jun. 2007.
[17] S. Deb, S. D. Gupta, J. Banerji, and S. D. Gupta, "Critical coupling at oblique incidence," J. Opt. A: Pure Appl. Opt., vol. 9, pp. 555-559, Jun. 2007.
[18] S. P. Frisbie, A. Krishnan, X. Xu, L. Grave de Peralta, S. A. Nikishin, M. W. Holtz, and A. A. Bernussi, "Optical reflectivity of asymmetric dielectric/metal/dielectric planar structures," J. Lightwave Technol., vol. 27, pp. 2964-2969, Aug. 2009.
[19] V. K. Sharma, A. Kumar, and A. Kapoor, "Analysis of surface and guided wave plasmon polariton modes in insulator–metal–insulator planar plasmonic waveguides," Opt. Commun., vol. 285, pp. 1123-1127, Oct. 2012.
[20] T. W. Allen and R. G. DeCorby, "Conditions for admittance-matched tunneling through symmetric metal-dielectric stacks," Opt. Express, vol. 20, pp. 578-588, Sep. 2012.
[21] P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, vol. 6, pp. 4370-4379, 1972.
[22] D. M. Pozar, Microwave engineering: Wiley, 2004.
[23] A. Nabok and A. Tsargorodskaya, "The method of total internal reflection ellipsometry for thin film characterisation and sensing," Thin Solid Films, vol. 516, pp. 8993-9001, Nov. 2008.
[24] J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. , vol. 1, pp. 742-753, Jul. 1984.
[25] K. D. Möller, Optics: Learning by computing, with examples using Maple, MathCad, Mathematica, and MATLAB: Springer Science+Business Media, LLC, 2007.
[26] N. Marcuvitz and I. o. E. Engineers, Waveguide handbook: McGraw-Hill, 1951.
[27] D. L. Lee, Electromagnetic principles of integrated optics: Wiley, 1986.
[28] K. J. Willis, J. B. Schneider, and S. C. Hagness, "Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD," Opt. Express, vol. 16, pp. 1903-1914, Feb. 2008.
[29] C. A. Balanis, Advanced engineering electromagnetics: Wiley, 2012.
[30] Opti-FDTD, Technical background and tutorials ver. 10.0, 2011.
[31] M. A. Ordal, R. J. Bell, J. R. W. Alexander, L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.," Appl. Opt., vol. 24, pp. 4493-4499, Dec. 1985.
指導教授 張殷榮(Yin-Jung Chang) 審核日期 2013-6-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明