博碩士論文 100329003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.144.226.114
姓名 江建儒(Jian-Ru Jiang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 銀修飾硫化亞銅基板應用於表面增強拉曼散射與光催化降解之研究
(Study on Surface Enhanced Raman Scattering and Photocatalytic Properties of Ag-decorated Cu2S Composite Nanostructures)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於奈米結構具有非常大之比表面積,因此其表面結構在奈米材料的應用中扮演著相當重要的角色。本研究利用金屬錯合反應(Metal complexation reaction)成功以化學溶液法合成出兩種不同的硫化亞銅(Cu2S)奈米結構,並探討硫化亞銅於表面增強拉曼散射(Surface Enhanced Raman Scattering, SERS)以及光催化降解(Photodegradation)之應用。為了增加硫化亞銅之SERS性質以及光催化降解效率,本研究利用硫化亞銅片狀奈米結構具有大表面積之性質控制銀奈米粒子沉積於表面特定位置,根據掃描式電子顯微鏡影像 (Scanning Electron Microscopy, SEM) 可發現銀奈米粒子優先選擇沉積在硫化亞銅片狀結構之邊界。此銀奈米粒子排列可有效增強其表面電漿場以及SERS強度。同時,銀金屬粒子硫化亞銅半導體複合結構可促進電子電洞分離增加其光催化降解之效率。
論文第二部分探討硫化亞銅奈米線陣列其場發性質及光催化降解之應用。利用生物分子胱胺酸(Cystine)結合金屬錯合反應可成功透過生物分子輔助化學溶液法在銅基板上製備出一維硫化亞銅奈米線陣列,其中胱胺酸不僅可當作表面形貌導引分子,促成奈米結構成長,其中所含之硫氫基更可做為硫的來源,以一種環保且低成本的方式合成硫化物奈米結構。硫化亞銅奈米線擁有良好的場發性質,根據實驗結果,硫化亞銅奈米線具有低開路電場(1.19 V/μm) 以及高場發射增強因子(β=19381)。由於光催化反應發生於材料表面,因此表面積對於光催化降解之效率有顯著的影響,相較於片狀奈米結構,奈米線結構具有較大之表面積其光降解效率亦優於奈米片結構。
摘要(英) The surface characteristics of nanostructures play a critical role in the applications. In this thesis, two Cu2S nanostructures synthesized via a general solution route are applied in surface enhanced Raman scattering (SERS) and photocatalytic degradation.
In the first part of this thesis, we demonstrate a facile, rapid, and practical approach to fabricate a flowerlike Cu2S substrate and then decorated Ag nanoparticles with a convenient galvanic reduction method. The scanning electron microscopy (SEM) images indicate that Ag nanoparticles are preferential deposited on the edge of Cu2S sheets due to the localization of the electrons on the surface of Cu2S. Owing to the introduction of Ag nanoparticles on the surface of Cu2S structures, the resulting Ag-Cu2S composite structures could be used as a versatile substrate for surface enhanced Raman scattering. In addition, Ag nanoparticles on the semiconductor surface behave like electron sinks, which can provide sites for accumulation of the photogenerated electrons, and then facilitate the separation of electrons and holes. Hence, adding Ag nanoparticles is a promising method to enhance the photocatalytic performance of Cu2S nanosheets. It is significant that photocatalysts fabricated by Cu2S nanosheets can be applied to the degradation of organic pollution, and solves the environmental issues.

In the second part, the Cu2S nanowires grow directly onto copper substrate by utilizing the biomolecule-assisted approach. Besides the reductive properties of biomolecules, they also have strong shape or size directing functionality in the reaction process. The field-emission properties of the Cu2S nanowires are studied by the Folwer-Nordheim (F-N) theory. The Cu2S nanowires show low turn-on field (1.19 V/μm) and high field enhancement factor (β=19381). The photocatalytic activity of two kinds of Cu2S structures was investigated by degradation of rhodamine B (RhB) under UV illumination. The experimental results indicate that surface area play a significant role on the efficiency of photocatalysis since photocatalytic reaction occurred on the surface.
關鍵字(中) ★ 表面增強拉曼散射
★ 光催化降解
★ 銀
★ 硫化亞銅
關鍵字(英) ★ SERS
★ photogegradation
★ Ag
★ Cu2S
論文目次 Contents
Abstract --------------------------------------------------------------------------------- I
Acknowledgement ------------------------------------------------------------------ V
Contents ------------------------------------------------------------------------------ VII
Figure Contents --------------------------------------------------------------------- X
Chapter 1 Introduction
1.1 Cu2S nanostructures -------------------------------------------------------------- 1
1.2 One-dimensional nanostructures ------------------------------------------------ 2
1.3 The structure of metal composite semiconductor ----------------------------- 3
1.4 Ag-decorated Cu2S composite nanostructures -------------------------------- 4
Chapter 2 Experimental Procedures
2.1 The Flow Chart of Experiment -------------------------------------------------- 6
2.2 Intial Metal Substrate Cleaning ------------------------------------------------- 7
2.3 Field Emission Scanning Electron Microscopy (FE-SEM) ----------------- 7
2.4 Transmission Electron Microscope Observation (TEM) -------------------- 8
2.5 X-Ray Diffraction (XRD) ------------------------------------------------------ 10
2.6 Raman Spectrometer Analysis ------------------------------------------------- 10
2.7 UV-Visible Spectrophotometer Analysis ------------------------------------- 12
2.8 X-Ray photoelectron Spectroscopy (XPS) ----------------------------------- 12
2.9 Field Emission Measurements ------------------------------------------------- 14
Chapter 3 Surface enhanced Raman scattering and photocatalytic properties of Ag-decorated Cu2S composite nanostructures
3.1 Motivation ------------------------------------------------------------------------ 15
3.2 Experimental --------------------------------------------------------------------- 18
3.2.1 Synthesis of Cu2S nanosheets over copper foil ------------------------- 18
3.2.2 Deposition of Ag nanoparticles on Cu2S nanosheets ------------------ 18
3.2.3 Measurement photocatalysis degradation of RhB ---------------------- 18
3.3 Results and Discussion --------------------------------------------------------- 19
3.3.1 Structural and morphological characterizations ------------------------ 19
3.3.2 SERS spectra of Rhodamine 6G on Ag-Cu2S composite nanostructures ---------------------------------------------------------------------------------------- 24
3.3.3 Photocatalysis Degradation of rhodamine B on Ag-Cu2S composite nanostructures ---------------------------------------------------------------------- 27
3.4 Conclusions ---------------------------------------------------------------------- 34
Chapter 4 Field emission and Photodegradation property of Cu2S nanowires
4.1 Motivation -------------------------------------------------------------------------- 35
4.2 Experimental ----------------------------------------------------------------------- 36
4.2.1 Synthesis of Cu2S nanowire over copper foil ----------------------------- 36
4.2.2 Measurement photodegradation of RhB ----------------------------------- 36
4.3 Results and Discussion ------------------------------------------------------------ 37
4.3.1 Structural and morphological characterizations --------------------------- 37
4.3.2 Electron field emission property -------------------------------------------- 44
4.3.3 Photocatalytic activity -------------------------------------------------------- 46
4.4 Conclusions ------------------------------------------------------------------------- 49
Chapter 5 Future Prospects ---------------------------------------------------- 50
References ---------------------------------------------------------------------------- 51
參考文獻 References
Chapter 1
1. R. Narayanan and M. A. El-Sayed, J. Am. Chem. Soc., 2003, 125, 8340-8347.
2. M. T. Nenadović, T. Rajh and O. I. Mićić, J. Phys. Chem., 1985, 89, 397-399.
3. M. Peng , L. L. Maa, Y. G. Zhang, M. Tan, J. B. Wang and Y. Yu, Mater. Res. Bull., 2009, 44, 1834-1841.
4. J. M. Wu, H. C. Shih and W. T. Wu, Chem. Phys. Lett., 2005, 413, 490-494.
5. L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang , H. Ni, Y. Zhang, Z. Wu and P. K. Chu, Biomaterials, 2011, 32, 5706-5716.
6. M. K. Sanyal, A. Datta and S. Hazra, Pure Appl. Chem., 2002, 74, 1553-1570.
7. Y. F. Yuan, J. P. Tul, H. M. Wu, Y. Li and D. Q. Shi, Nanotechnology, 2005, 16, 803-808.
8. Y. Wu, C. Wadia, W. Ma, B. Sadtler and A. P. Alivisatos, Nano Lett., 2008, 8, 2551-2555.
9. T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa and T. Nakayama, Appl. Phys. Lett., 2003, 82, 3032-3034.
10. A. A. Sagade and R. Sharma, Sens. Actuators B, 2008, 133, 135-143.
11. C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, B. J. Hwang and L. J. Chen, J. Mater. Chem., 2010, 20, 6638-6645.
12. Y. Chang, M. L. Lye and H. C. Zen, Langmuir, 2005, 21, 3746-3748.
13. X. Li, H. Shen, J. Niu, S. Li, Y. Zhang, H. Wang and L. S. Li, J. Am. Chem. Soc., 2010, 132, 12778-12779.
14. Z. Zhuang, Q. Peng, B. Zhang and Y. Li, J. Am. Chem. Soc., 2008, 130, 10482-10483.
15. I. Grozdanov and M. Najdoski, J. Solid. State. Chem., 1995, 114, 469-475.
16. E. Lai, W. Kim and P. Yang, Nano Res., 2008, 1, 123-128.
17. Y. Hu, J. Zhou , P. H. Yeh, Z. Li , T. Y. Wei and Z. L. Wang, Adv. Mater., 2010, 22, 3327-3332.
18. M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater., 2005, 4, 455-459.
19. H. T. Hsueh, T. J. Hsueh, S. J. Chang, T. Y. Tsai, F. Y. Hung, S. P. Chang, W. Y. Weng and B. T. Dai, Nanotechnology, 2011, 10, 1161-1165.
20. X. f. Duan, Y. Huang, Y. Cui, J. f. Wang and C. M. Lieber, Nature, 2001, 409, 66-69.
21. Y. Huang, X. f. Duan, Y. Cui, L. J. Lauhon, K. H. Kim and C. M. Lieber, Science, 2001, 294, 1313-1317.
22. Y. Sun, N. George N. Angwafor, D. J. Riley and M. N. R. Ashfold, Chem. Phys. Lett., 2006, 431, 352-357.
23. M. A. Chong, Y. B. Zheng, H. Gao and L. K. Tan, Appl. Phys. Lett., 2006, 89, 233104.
24. B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. Yu and D. Wang, Nano Lett., 2007, 7, 323-328.
25. J. Chen, S. Z. Deng, N. S. Xu, S. H. Wang and X. G. Wen, Appl. Phys. Lett., 2002, 80, 3620.
26. F. H. Chu, C. W. Huang, C. L. Hsin, C. W. Wang, S. Y. Yu, P. H. Yeh and W. W. Wu, Nanoscale, 2012, 4, 1471-1475.
27. X. Li, G. Chen, L. Yang, Z. Jin and J. Liu, Adv. Funct. Mater., 2010, 20, 2815-2824.
28. A. Roguska, A. Kudelski, M. Pisarek, M. Lewandowska, M. Dolata and M. J. Czachor, J. Raman Spectrosc., 2009, 40, 1652-1656.
29. Y. H. Kim, K. Y. Park, D. M. Jang, Y. M. Song, H. S. Kim, Y. J. Cho, Y. Myung and J. H. Park, J. Phys. Chem. C, 2010, 114, 22141-22146.
30. S. Y. Chang, S. F. Chen and Y. C. Huang, J. Phys. Chem. C, 2011, 115, 1600-1607.
31. K. L. Kim, S. J. Lee and K. Kim, J. Phys. Chem. B, 2004, 108, 9216-9220.
32. L. A. Dick, A. J. Haes and R. P. V. Duyne, J. Phys. Chem. B, 2000, 104, 11752-11762.
33. S. E. Hunyadi and C. J. Murphy, J. Mater. Chem., 2006, 16, 3929-3935.
34. K. Kwon, K. Y. Lee, Y. W. Lee, M. Kim, J. Heo, S. J. Ahn and S. W. Han, J. Phys. Chem. C, 2007, 111, 1161-1165.
35. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. han, C. F. Hsu, J. K. Wang and Y. L. Wang, Adv. Mater., 2006, 18, 491-495.
36. W. W. Lu, G. S. Liu, S. Y. Gao, S. T. Xing and J. J. Wang, Nanotechnology, 2008, 19, 445711.
37. X. Z. Li and F. B. Li, Environ. Sci. Technol., 2001, 35, 2381-2387.
38. W. Song, J. J. Wang, Z. Mao, W. Q. Xu and B. Zhao, Spectrochim. Acta. A, 2011, 79, 1247-1250.
39. W. Song, X. Han, L. Chen, Y. M Yang, B. Tang, W. Ji, W. D. Ruan, W. Q. Xu, B. Zhao and Y. Ozaki, J. Raman Spectrosc., 2010, 41, 907-913.
40. A. Roucoux, J. Schulz and H. Patin, Chem. Rev., 2002, 102, 3757-3778.
41. B. J. Wiley, Y. C Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger and Y. N. Xia, Nano Lett., 2007, 7, 1032-1036.
42. A. J. Haes and R. P. V. Duyne, J. Am. Chem. Soc., 2002, 124, 10596-10604.

Chapter 2
43. JEOL, JEM-2100 electron microscope, 2004.
44. U&I, UniRAM Micro Raman System Operating Manual.

Chapter 3
45. S. Nie and S. R. Emory, Science, 1997, 275, 1102-1106.
46. B. Gu, J. Tio, W. Wang, Y. K. Ku and S. Dai, Appl. Spectrosc., 2004, 58, 741-744.
47. K. Rajeshwar, M. E. Osugi,W. Chanmanee, C. R. Chenthamarakshan, M. V. B. Zanoni, P. Kajitvichyanukul and R. Krishnan-Ayer, J. Photoch. Photobio. C, 2008, 9, 171-192.
48. S. Malato, P. F. ndez-Ibáñez, M. I. Maldonado, J. Blanco and W. Gernjak, Catal. Today, 2009, 147, 1-59.
49. O. Prieto, J. Fermoso, Y. Nuñez, J. L. D. Valle and R. Irusta, Sol. Energy, 2005, 79, 376-383.
50. N. Daneshvar, M. Rabbani, N. Modirshahla and M.A. Behnajady, J. Photoch. Photobio. A, 2004, 168, 39-45.
51. N. Guettaï, H. Ait Amar, Desalination, 2005, 185, 439-448.

Chapter 4
52. Y. Hu, Z. Zheng, H. M. Jia, Y. W. Tang and L. H. Zhang, J. Phys. Chem. C, 2008, 112, 13037-13042.
53. J. Chen, S. Z. Deng, N. S. Xu, S. Wang and X. G. Wen, Appl. Phys. Lett., 80, 3620-3622.
54. K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen and P. T. Chou, Nano Lett., 2007, 7, 1908-1913.
55. P. N. Uppal, L. C. Burton, L. Rivaud and J. E. Greene, J. Appl. Phys., 1983, 54, 982-986.
56. X. G. Bo, J. Bai, L. X. Wang and L. P. Guo, Talanta, 2010, 81, 339-345.
57. L. Chen, Y. D. Xia, X. F. Liang, K. B. Yin and J. Yin, Appl. Phys. Lett., 2007, 91, 073511.
58. S. H. Wang and S. H. Yang, Chem. Mater., 2001, 13, 4794-4799.
59. X. L. Yu and X. Q. An, Mater. Lett., 2010, 64, 252-254.
60. Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota and A. Sujishima, Environ. Sci. Technol., 2001, 35, 2365-2368.
61. T. Tachikawa, M. Fujitsuka and T. Majima, J. Phys. Chem. C, 2007, 111, 5259-5275.
62. K. E. O’shea, I. Garcia and M. Aguilar, Res. Chem. lntermed, 1997, 23, 325-339.
63. C. B. Chory, C. Remenyi, H. Strohm, and G. Müller, J. Phys. Chem. B, 2004, 108, 7637-7640.
64. B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, J. Phys. Chem. B, 2006, 110, 8978-8985.
65. H. Grijalva, M. Inoue, S. Boggavarapu and P. Calvert, J. Mater. Chem., 1996, 6, 1157-1160.
66. B. Cao, Y. Jiang, C. Wang, W. Wang, L. Wang, M. Niu, W. Zhang, Y. Li and S. T. Lee, Adv. Funct. Mater., 2007, 17, 1501-1506.
67. Y. Li, Z. Wang and Y. Ding, Inorg. Chem., 1999, 38, 4737-4740.
68. M. Chen, Y. Xie, H. Chen, Z. Qiao and Y. Qian, J. Colloid. Interf. Sci., 2001, 237, 47-53.
69. Q. Q. Wang, G. Xu and G. R. Han, J. Solid. State. Chem., 2005, 178, 2680-2685.
70. L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh and S. H. Lai, Appl. Phys. Lett., 2003, 82, 4334-4336.
71. P. G. Collins and A. Zettl, Phys. Rev. B, 1997, 55, 9391-9399.
72. S. Dimitrijevic, J. C. Withers, V. P. Mammana, O. R. Monteiro and J. W. Ager, Appl. Phys. Lett., 1999, 75, 2680-2682.
73. D. Temple, Mater. Sci. Eng., 1999, R24, 185-239.
74. S. H. Lai, K. P. Huang, Y. M. Pan, Y. L. Chen, L. H. Chan, P. Lin and H. C. Shih, Chem. Phys. Lett., 2003, 382, 567-572.
75. C. X. Xu and X. W. Sun, Appl. Phys. Lett., 2003, 83, 3806-3808.
76. C. X. Xu, X. W. Sun and B. J. Chen, Appl. Phys. Lett., 2004, 84, 1540-1542.

Chapter 5
77. G. Qian, K. Huo and P. K. Chu, J. Phys. Chem. C, 2009, 113, 5520-5525.
78. X. Y. Wang, Z. Fang and X. Lin, J. Nanopart. Res., 2009, 11, 731-736.
79. G. Li, M. Liua and H. Liu, CrystEngComm, 2011, 13, 5337-5341.
80. W. X. Zhang, X. G. Wen, and S. Yang, Langmuir, 2003, 19, 4420-4426.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2013-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明