參考文獻 |
1. ; Available from: http://www.who.int/mediacentre/factsheets/fs297/en/index.html.
2. Finkel, T., M. Serrano, and M.A. Blasco, The common biology of cancer and ageing. Nature, 2007. 448(7155): p. 767-74.
3. Boffetta, P. and F. Nyberg, Contribution of environmental factors to cancer risk. Br Med Bull, 2003. 68: p. 71-94.
4. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
5. Nakasone, E.S., et al., Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell, 2012. 21(4): p. 488-503.
6. de Visser, K.E., A. Eichten, and L.M. Coussens, Paradoxical roles of the immune system during cancer development. Nat Rev Cancer, 2006. 6(1): p. 24-37.
7. Kandoth, C., et al., Integrated genomic characterization of endometrial carcinoma. Nature, 2013. 497(7447): p. 67-73.
8. Arora, A. and E.M. Scholar, Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther, 2005. 315(3): p. 971-9.
9. Hartmann, J.T., et al., Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr Drug Metab, 2009. 10(5): p. 470-81.
10. Lemmon, M.A. and J. Schlessinger, Cell signaling by receptor tyrosine kinases. Cell, 2010. 141(7): p. 1117-34.
11. Hynes, N.E. and G. MacDonald, ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol, 2009. 21(2): p. 177-84.
12. Perona, R., Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol, 2006. 8(2): p. 77-82.
13. Yu, J., C. Ustach, and H.R. Kim, Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol, 2003. 36(1): p. 49-59.
14. Cheng, N., et al., Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol Cancer Res, 2008. 6(10): p. 1521-33.
15. Bhowmick, N.A., E.G. Neilson, and H.L. Moses, Stromal fibroblasts in cancer initiation and progression. Nature, 2004. 432(7015): p. 332-7.
16. Hynes, N.E. and H.A. Lane, ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer, 2005. 5(5): p. 341-54.
17. Bos, J.L., ras oncogenes in human cancer: a review. Cancer Res, 1989. 49(17): p. 4682-9.
18. Kan, Z., et al., Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 2010. 466(7308): p. 869-73.
19. Brose, M.S., et al., BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res, 2002. 62(23): p. 6997-7000.
20. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54.
21. Steelman, L.S., et al., Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia, 2011. 25(7): p. 1080-94.
22. Davies, M.A. and Y. Samuels, Analysis of the genome to personalize therapy for melanoma. Oncogene, 2010. 29(41): p. 5545-55.
23. Jiang, B.H. and L.Z. Liu, PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res, 2009. 102: p. 19-65.
24. Yuan, T.L. and L.C. Cantley, PI3K pathway alterations in cancer: variations on a theme. Oncogene, 2008. 27(41): p. 5497-510.
25. Wertz, I.E. and V.M. Dixit, Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ, 2010. 17(1): p. 14-24.
26. Cabrita, M.A. and G. Christofori, Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis, 2008. 11(1): p. 53-62.
27. Amit, I., et al., A module of negative feedback regulators defines growth factor signaling. Nat Genet, 2007. 39(4): p. 503-12.
28. Mosesson, Y., G.B. Mills, and Y. Yarden, Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer, 2008. 8(11): p. 835-50.
29. Barbacid, M., ras genes. Annu Rev Biochem, 1987. 56: p. 779-827.
30. Medema, R.H. and J.L. Bos, The role of p21ras in receptor tyrosine kinase signaling. Crit Rev Oncog, 1993. 4(6): p. 615-61.
31. Sudarsanam, S. and D.E. Johnson, Functional consequences of mTOR inhibition. Curr Opin Drug Discov Devel, 2010. 13(1): p. 31-40.
32. O’Reilly, K.E., et al., mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res, 2006. 66(3): p. 1500-8.
33. Collado, M. and M. Serrano, Senescence in tumours: evidence from mice and humans. Nat Rev Cancer, 2010. 10(1): p. 51-7.
34. Evan, G.I. and F. d’Adda di Fagagna, Cellular senescence: hot or what? Curr Opin Genet Dev, 2009. 19(1): p. 25-31.
35. Lowe, S.W., E. Cepero, and G. Evan, Intrinsic tumour suppression. Nature, 2004. 432(7015): p. 307-15.
36. Mooi, W.J. and D.S. Peeper, Oncogene-induced cell senescence--halting on the road to cancer. N Engl J Med, 2006. 355(10): p. 1037-46.
37. Burkhart, D.L. and J. Sage, Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer, 2008. 8(9): p. 671-82.
38. Deshpande, A., P. Sicinski, and P.W. Hinds, Cyclins and cdks in development and cancer: a perspective. Oncogene, 2005. 24(17): p. 2909-15.
39. Sherr, C.J. and F. McCormick, The RB and p53 pathways in cancer. Cancer Cell, 2002. 2(2): p. 103-12.
40. Lipinski, M.M. and T. Jacks, The retinoblastoma gene family in differentiation and development. Oncogene, 1999. 18(55): p. 7873-82.
41. Ghebranious, N. and L.A. Donehower, Mouse models in tumor suppression. Oncogene, 1998. 17(25): p. 3385-400.
42. Curto, M., et al., Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol, 2007. 177(5): p. 893-903.
43. Okada, T., M. Lopez-Lago, and F.G. Giancotti, Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol, 2005. 171(2): p. 361-71.
44. Shaw, R.J., Tumor suppression by LKB1: SIK-ness prevents metastasis. Sci Signal, 2009. 2(86): p. pe55.
45. Partanen, J.I., A.I. Nieminen, and J. Klefstrom, 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc. Cell Cycle, 2009. 8(5): p. 716-24.
46. Hezel, A.F. and N. Bardeesy, LKB1; linking cell structure and tumor suppression. Oncogene, 2008. 27(55): p. 6908-19.
47. Ikushima, H. and K. Miyazono, TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer, 2010. 10(6): p. 415-24.
48. Massague, J., TGFbeta in Cancer. Cell, 2008. 134(2): p. 215-30.
49. Bierie, B. and H.L. Moses, Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer, 2006. 6(7): p. 506-20.
50. Willis, S.N. and J.M. Adams, Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol, 2005. 17(6): p. 617-25.
51. Evan, G. and T. Littlewood, A matter of life and cell death. Science, 1998. 281(5381): p. 1317-22.
52. Adams, J.M. and S. Cory, The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007. 26(9): p. 1324-37.
53. Junttila, M.R. and G.I. Evan, p53--a Jack of all trades but master of none. Nat Rev Cancer, 2009. 9(11): p. 821-9.
54. Levine, B. and G. Kroemer, Autophagy in the pathogenesis of disease. Cell, 2008. 132(1): p. 27-42.
55. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73.
56. Apel, A., et al., Autophagy-A double-edged sword in oncology. Int J Cancer, 2009. 125(5): p. 991-5.
57. Amaravadi, R.K. and C.B. Thompson, The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res, 2007. 13(24): p. 7271-9.
58. Sinha, S. and B. Levine, The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene, 2008. 27 Suppl 1: p. S137-48.
59. Mathew, R., V. Karantza-Wadsworth, and E. White, Role of autophagy in cancer. Nat Rev Cancer, 2007. 7(12): p. 961-7.
60. White, E. and R.S. DiPaola, The double-edged sword of autophagy modulation in cancer. Clin Cancer Res, 2009. 15(17): p. 5308-16.
61. Lu, Z., et al., The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest, 2008. 118(12): p. 3917-29.
62. Galluzzi, L. and G. Kroemer, Necroptosis: a specialized pathway of programmed necrosis. Cell, 2008. 135(7): p. 1161-3.
63. Zong, W.X. and C.B. Thompson, Necrotic death as a cell fate. Genes Dev, 2006. 20(1): p. 1-15.
64. Grivennikov, S.I., F.R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, 2010. 140(6): p. 883-99.
65. White, E., et al., Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol, 2010. 22(2): p. 212-7.
66. Blasco, M.A., Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet, 2005. 6(8): p. 611-22.
67. Shay, J.W. and W.E. Wright, Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol, 2000. 1(1): p. 72-6.
68. Artandi, S.E., et al., Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature, 2000. 406(6796): p. 641-5.
69. Harley, C.B., et al., Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol, 1994. 59: p. 307-15.
70. Ince, T.A., et al., Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 2007. 12(2): p. 160-70.
71. Passos, J.F., G. Saretzki, and T. von Zglinicki, DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res, 2007. 35(22): p. 7505-13.
72. Zhang, H., et al., Disparate effects of telomere attrition on gene expression during replicative senescence of human mammary epithelial cells cultured under different conditions. Oncogene, 2004. 23(37): p. 6193-8.
73. Sherr, C.J. and R.A. DePinho, Cellular senescence: mitotic clock or culture shock? Cell, 2000. 102(4): p. 407-10.
74. Artandi, S.E. and R.A. DePinho, Telomeres and telomerase in cancer. Carcinogenesis, 2010. 31(1): p. 9-18.
75. Feldser, D.M. and C.W. Greider, Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell, 2007. 11(5): p. 461-9.
76. Kawai, T., et al., Telomere length and telomerase expression in atypical adenomatous hyperplasia and small bronchioloalveolar carcinoma of the lung. Am J Clin Pathol, 2007. 127(2): p. 254-62.
77. Hansel, D.E., et al., Telomere length variation in biliary tract metaplasia, dysplasia, and carcinoma. Mod Pathol, 2006. 19(6): p. 772-9.
78. Raynaud, C.M., et al., DNA damage repair and telomere length in normal breast, preneoplastic lesions, and invasive cancer. Am J Clin Oncol, 2010. 33(4): p. 341-5.
79. Chin, K., et al., In situ analyses of genome instability in breast cancer. Nat Genet, 2004. 36(9): p. 984-8.
80. Cong, Y. and J.W. Shay, Actions of human telomerase beyond telomeres. Cell Res, 2008. 18(7): p. 725-32.
81. Kang, H.J., et al., Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J Neurosci, 2004. 24(6): p. 1280-7.
82. Masutomi, K., et al., The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci U S A, 2005. 102(23): p. 8222-7.
83. Maida, Y., et al., An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature, 2009. 461(7261): p. 230-5.
84. Park, J.I., et al., Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 2009. 460(7251): p. 66-72.
85. Hanahan, D. and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996. 86(3): p. 353-64.
86. Baeriswyl, V. and G. Christofori, The angiogenic switch in carcinogenesis. Semin Cancer Biol, 2009. 19(5): p. 329-37.
87. Bergers, G., et al., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2000. 2(10): p. 737-44.
88. Ferrara, N., Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol, 2009. 29(6): p. 789-91.
89. Mac Gabhann, F. and A.S. Popel, Systems biology of vascular endothelial growth factors. Microcirculation, 2008. 15(8): p. 715-38.
90. Carmeliet, P., VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005. 69 Suppl 3: p. 4-10.
91. Kessenbrock, K., V. Plaks, and Z. Werb, Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010. 141(1): p. 52-67.
92. Nagy, J.A., et al., Heterogeneity of the tumor vasculature. Semin Thromb Hemost, 2010. 36(3): p. 321-31.
93. Baluk, P., H. Hashizume, and D.M. McDonald, Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev, 2005. 15(1): p. 102-11.
94. Raica, M., A.M. Cimpean, and D. Ribatti, Angiogenesis in pre-malignant conditions. Eur J Cancer, 2009. 45(11): p. 1924-34.
95. Olive, K.P., et al., Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009. 324(5933): p. 1457-61.
96. Zee, Y.K., et al., Imaging angiogenesis of genitourinary tumors. Nat Rev Urol, 2010. 7(2): p. 69-82.
97. Turner, H.E., et al., Angiogenesis in endocrine tumors. Endocr Rev, 2003. 24(5): p. 600-32.
98. Bergers, G. and L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003. 3(6): p. 401-10.
99. Ribatti, D., Endogenous inhibitors of angiogenesis: a historical review. Leuk Res, 2009. 33(5): p. 638-44.
100. Kazerounian, S., K.O. Yee, and J. Lawler, Thrombospondins in cancer. Cell Mol Life Sci, 2008. 65(5): p. 700-12.
101. Folkman, J., Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002. 29(6 Suppl 16): p. 15-8.
102. Nyberg, P., L. Xie, and R. Kalluri, Endogenous inhibitors of angiogenesis. Cancer Res, 2005. 65(10): p. 3967-79.
103. Folkman, J., Angiogenesis. Annu Rev Med, 2006. 57: p. 1-18.
104. Cao, Y., Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov, 2010. 9(2): p. 107-15.
105. Seppinen, L., et al., Lack of collagen XVIII accelerates cutaneous wound healing, while overexpression of its endostatin domain leads to delayed healing. Matrix Biol, 2008. 27(6): p. 535-46.
106. Raza, A., M.J. Franklin, and A.Z. Dudek, Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol, 2010. 85(8): p. 593-8.
107. Bergers, G. and S. Song, The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol, 2005. 7(4): p. 452-64.
108. Qian, B.Z. and J.W. Pollard, Macrophage diversity enhances tumor progression and metastasis. Cell, 2010. 141(1): p. 39-51.
109. Zumsteg, A. and G. Christofori, Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol, 2009. 21(1): p. 60-70.
110. Murdoch, C., et al., The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer, 2008. 8(8): p. 618-31.
111. De Palma, M., et al., Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol, 2007. 28(12): p. 519-24.
112. Ferrara, N., Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev, 2010. 21(1): p. 21-6.
113. Patenaude, A., J. Parker, and A. Karsan, Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res, 2010. 79(3): p. 217-23.
114. Kovacic, J.C. and M. Boehm, Resident vascular progenitor cells: an emerging role for non-terminally differentiated vessel-resident cells in vascular biology. Stem Cell Res, 2009. 2(1): p. 2-15.
115. Lamagna, C. and G. Bergers, The bone marrow constitutes a reservoir of pericyte progenitors. J Leukoc Biol, 2006. 80(4): p. 677-81.
116. Berx, G. and F. van Roy, Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a003129.
117. Cavallaro, U. and G. Christofori, Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer, 2004. 4(2): p. 118-32.
118. Talmadge, J.E. and I.J. Fidler, AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res, 2010. 70(14): p. 5649-69.
119. Fidler, I.J., The pathogenesis of cancer metastasis: the ’seed and soil’ hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-8.
120. Klymkowsky, M.W. and P. Savagner, Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol, 2009. 174(5): p. 1588-93.
121. Polyak, K. and R.A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer, 2009. 9(4): p. 265-73.
122. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
123. Yilmaz, M. and G. Christofori, EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev, 2009. 28(1-2): p. 15-33.
124. Barrallo-Gimeno, A. and M.A. Nieto, The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development, 2005. 132(14): p. 3151-61.
125. Peinado, H., et al., Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci, 2004. 117(Pt 13): p. 2827-39.
126. Micalizzi, D.S., S.M. Farabaugh, and H.L. Ford, Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia, 2010. 15(2): p. 117-34.
127. Taube, J.H., et al., Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A, 2010. 107(35): p. 15449-54.
128. Schmalhofer, O., S. Brabletz, and T. Brabletz, E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev, 2009. 28(1-2): p. 151-66.
129. Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 2008. 14(6): p. 818-29.
130. Karnoub, A.E. and R.A. Weinberg, Chemokine networks and breast cancer metastasis. Breast Dis, 2006. 26: p. 75-85.
131. Brabletz, T., et al., Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A, 2001. 98(18): p. 10356-61.
132. Hlubek, F., et al., Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer, 2007. 121(9): p. 1941-8.
133. Egeblad, M., E.S. Nakasone, and Z. Werb, Tumors as organs: complex tissues that interface with the entire organism. Dev Cell, 2010. 18(6): p. 884-901.
134. Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009. 9(4): p. 239-52.
135. Kalluri, R. and M. Zeisberg, Fibroblasts in cancer. Nat Rev Cancer, 2006. 6(5): p. 392-401.
136. Karnoub, A.E., et al., Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007. 449(7162): p. 557-63.
137. Palermo, C. and J.A. Joyce, Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci, 2008. 29(1): p. 22-8.
138. Mohamed, M.M. and B.F. Sloane, Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer, 2006. 6(10): p. 764-75.
139. Gocheva, V., et al., IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 2010. 24(3): p. 241-55.
140. Wyckoff, J.B., et al., Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res, 2007. 67(6): p. 2649-56.
141. Hugo, H., et al., Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol, 2007. 213(2): p. 374-83.
142. Friedl, P. and K. Wolf, Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res, 2008. 68(18): p. 7247-9.
143. Friedl, P. and K. Wolf, Plasticity of cell migration: a multiscale tuning model. J Cell Biol, 2010. 188(1): p. 11-9.
144. Madsen, C.D. and E. Sahai, Cancer dissemination--lessons from leukocytes. Dev Cell, 2010. 19(1): p. 13-26.
145. Sabeh, F., R. Shimizu-Hirota, and S.J. Weiss, Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol, 2009. 185(1): p. 11-9.
146. Campbell, P.J., et al., The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 2010. 467(7319): p. 1109-13.
147. Luebeck, E.G., Cancer: Genomic evolution of metastasis. Nature, 2010. 467(7319): p. 1053-5.
148. Yachida, S., et al., Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010. 467(7319): p. 1114-7.
149. McGowan, P.M., J.M. Kirstein, and A.F. Chambers, Micrometastatic disease and metastatic outgrowth: clinical issues and experimental approaches. Future Oncol, 2009. 5(7): p. 1083-98.
150. Aguirre-Ghiso, J.A., Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer, 2007. 7(11): p. 834-46.
151. Townson, J.L. and A.F. Chambers, Dormancy of solitary metastatic cells. Cell Cycle, 2006. 5(16): p. 1744-50.
152. Demicheli, R., et al., The effects of surgery on tumor growth: a century of investigations. Ann Oncol, 2008. 19(11): p. 1821-8.
153. Barkan, D., J.E. Green, and A.F. Chambers, Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer, 2010. 46(7): p. 1181-8.
154. Naumov, G.N., et al., Tumor-vascular interactions and tumor dormancy. APMIS, 2008. 116(7-8): p. 569-85.
155. Kenific, C.M., A. Thorburn, and J. Debnath, Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol, 2010. 22(2): p. 241-5.
156. Teng, M.W., et al., Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol, 2008. 84(4): p. 988-93.
157. Gupta, G.P., et al., Identifying site-specific metastasis genes and functions. Cold Spring Harb Symp Quant Biol, 2005. 70: p. 149-58.
158. Peinado, H., S. Lavotshkin, and D. Lyden, The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol, 2011. 21(2): p. 139-46.
159. Coghlin, C. and G.I. Murray, Current and emerging concepts in tumour metastasis. J Pathol, 2010. 222(1): p. 1-15.
160. Klein, C.A., Parallel progression of primary tumours and metastases. Nat Rev Cancer, 2009. 9(4): p. 302-12.
161. Gerhardt, H. and H. Semb, Pericytes: gatekeepers in tumour cell metastasis? J Mol Med (Berl), 2008. 86(2): p. 135-44.
162. Kim, M.Y., et al., Tumor self-seeding by circulating cancer cells. Cell, 2009. 139(7): p. 1315-26.
163. Negrini, S., V.G. Gorgoulis, and T.D. Halazonetis, Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol, 2010. 11(3): p. 220-8.
164. Luo, J., N.L. Solimini, and S.J. Elledge, Principles of cancer therapy: oncogene and non-oncogene addiction. Cell, 2009. 136(5): p. 823-37.
165. Colotta, F., et al., Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009. 30(7): p. 1073-81.
166. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature, 2009. 461(7267): p. 1071-8.
167. Kastan, M.B., DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture. Mol Cancer Res, 2008. 6(4): p. 517-24.
168. Sigal, A. and V. Rotter, Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res, 2000. 60(24): p. 6788-93.
169. Lane, D.P., Cancer. p53, guardian of the genome. Nature, 1992. 358(6381): p. 15-6.
170. Berdasco, M. and M. Esteller, Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell, 2010. 19(5): p. 698-711.
171. Esteller, M., Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007. 8(4): p. 286-98.
172. Jones, P.A. and S.B. Baylin, The epigenomics of cancer. Cell, 2007. 128(4): p. 683-92.
173. Salk, J.J., E.J. Fox, and L.A. Loeb, Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol, 2010. 5: p. 51-75.
174. Kinzler, K.W. and B. Vogelstein, Cancer-susceptibility genes. Gatekeepers and caretakers. Nature, 1997. 386(6627): p. 761, 763.
175. Ciccia, A. and S.J. Elledge, The DNA damage response: making it safe to play with knives. Mol Cell, 2010. 40(2): p. 179-204.
176. Harper, J.W. and S.J. Elledge, The DNA damage response: ten years after. Mol Cell, 2007. 28(5): p. 739-45.
177. Friedberg, E.C., et al., DNA repair: from molecular mechanism to human disease. DNA Repair (Amst), 2006. 5(8): p. 986-96.
178. Barnes, D.E. and T. Lindahl, Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet, 2004. 38: p. 445-76.
179. Korkola, J. and J.W. Gray, Breast cancer genomes--form and function. Curr Opin Genet Dev, 2010. 20(1): p. 4-14.
180. Dvorak, H.F., Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med, 1986. 315(26): p. 1650-9.
181. DeNardo, D.G., P. Andreu, and L.M. Coussens, Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev, 2010. 29(2): p. 309-16.
182. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14.
183. Warburg, O., On respiratory impairment in cancer cells. Science, 1956. 124(3215): p. 269-70.
184. Jones, R.G. and C.B. Thompson, Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev, 2009. 23(5): p. 537-48.
185. DeBerardinis, R.J., et al., The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab, 2008. 7(1): p. 11-20.
186. Hsu, P.P. and D.M. Sabatini, Cancer cell metabolism: Warburg and beyond. Cell, 2008. 134(5): p. 703-7.
187. Kennedy, K.M. and M.W. Dewhirst, Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol, 2010. 6(1): p. 127-48.
188. Feron, O., Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol, 2009. 92(3): p. 329-33.
189. Semenza, G.L., Tumor metabolism: cancer cells give and take lactate. J Clin Invest, 2008. 118(12): p. 3835-7.
190. Semenza, G.L., Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 2010. 29(5): p. 625-34.
191. Kroemer, G. and J. Pouyssegur, Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell, 2008. 13(6): p. 472-82.
192. Semenza, G.L., HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev, 2010. 20(1): p. 51-6.
193. Hardee, M.E., et al., Novel imaging provides new insights into mechanisms of oxygen transport in tumors. Curr Mol Med, 2009. 9(4): p. 435-41.
194. Vajdic, C.M. and M.T. van Leeuwen, Cancer incidence and risk factors after solid organ transplantation. Int J Cancer, 2009. 125(8): p. 1747-54.
195. Pichler, K., et al., Strong induction of 4-1BB, a growth and survival promoting costimulatory receptor, in HTLV-1-infected cultured and patients’ T cells by the viral Tax oncoprotein. Blood, 2008. 111(9): p. 4741-51.
196. Kim, R., M. Emi, and K. Tanabe, Cancer immunoediting from immune surveillance to immune escape. Immunology, 2007. 121(1): p. 1-14.
197. Ferrone, C. and G. Dranoff, Dual roles for immunity in gastrointestinal cancers. J Clin Oncol, 2010. 28(26): p. 4045-51.
198. Smyth, M.J., G.P. Dunn, and R.D. Schreiber, Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol, 2006. 90: p. 1-50.
199. Bindea, G., et al., Natural immunity to cancer in humans. Curr Opin Immunol, 2010. 22(2): p. 215-22.
200. Nelson, B.H., The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev, 2008. 222: p. 101-16.
201. Pages, F., et al., Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene, 2010. 29(8): p. 1093-102.
202. Strauss, D.C. and J.M. Thomas, Transmission of donor melanoma by organ transplantation. Lancet Oncol, 2010. 11(8): p. 790-6.
203. Yang, L., Y. Pang, and H.L. Moses, TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol, 2010. 31(6): p. 220-7.
204. Shields, J.D., et al., Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science, 2010. 328(5979): p. 749-52.
205. Mougiakakos, D., et al., Regulatory T cells in cancer. Adv Cancer Res, 2010. 107: p. 57-117.
206. Ostrand-Rosenberg, S. and P. Sinha, Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol, 2009. 182(8): p. 4499-506.
207. Singh, A. and J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010. 29(34): p. 4741-51.
208. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15.
209. Morel, A.P., et al., Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 2008. 3(8): p. e2888.
210. Creighton, C.J., et al., Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A, 2009. 106(33): p. 13820-5.
211. Buck, E., et al., Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer Ther, 2007. 6(2): p. 532-41.
212. Cho, R.W. and M.F. Clarke, Recent advances in cancer stem cells. Curr Opin Genet Dev, 2008. 18(1): p. 48-53.
213. Lobo, N.A., et al., The biology of cancer stem cells. Annu Rev Cell Dev Biol, 2007. 23: p. 675-99.
214. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
215. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-11.
216. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
217. Gilbertson, R.J. and J.N. Rich, Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer, 2007. 7(10): p. 733-6.
218. Boiko, A.D., et al., Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature, 2010. 466(7302): p. 133-7.
219. Gupta, P.B., C.L. Chaffer, and R.A. Weinberg, Cancer stem cells: mirage or reality? Nat Med, 2009. 15(9): p. 1010-2.
220. Quintana, E., et al., Efficient tumour formation by single human melanoma cells. Nature, 2008. 456(7222): p. 593-8.
221. Brabletz, T., et al., Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005. 5(9): p. 744-9.
222. Soda, Y., et al., Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A, 2011. 108(11): p. 4274-80.
223. El Hallani, S., et al., A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain, 2010. 133(Pt 4): p. 973-82.
224. Ricci-Vitiani, L., et al., Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature, 2010. 468(7325): p. 824-8.
225. Wang, R., et al., Glioblastoma stem-like cells give rise to tumour endothelium. Nature, 2010. 468(7325): p. 829-33.
226. Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42.
227. Pasquale, E.B., Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer, 2010. 10(3): p. 165-80.
228. Ahmed, Z. and R. Bicknell, Angiogenic signalling pathways. Methods Mol Biol, 2009. 467: p. 3-24.
229. Dejana, E., et al., Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res, 2009. 335(1): p. 17-25.
230. Tammela, T. and K. Alitalo, Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010. 140(4): p. 460-76.
231. Gaengel, K., et al., Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol, 2009. 29(5): p. 630-8.
232. Pietras, K. and A. Ostman, Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res, 2010. 316(8): p. 1324-31.
233. Coffelt, S.B., et al., Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol, 2010. 176(4): p. 1564-76.
234. Karin, M., T. Lawrence, and V. Nizet, Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell, 2006. 124(4): p. 823-35.
235. Schafer, M. and S. Werner, Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol, 2008. 9(8): p. 628-38.
236. Dirat, B., et al., Unraveling the obesity and breast cancer links: a role for cancer-associated adipocytes? Endocr Dev, 2010. 19: p. 45-52.
237. Rasanen, K. and A. Vaheri, Activation of fibroblasts in cancer stroma. Exp Cell Res, 2010. 316(17): p. 2713-22.
238. Shimoda, M., K.T. Mellody, and A. Orimo, Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol, 2010. 21(1): p. 19-25.
239. Bergfeld, S.A. and Y.A. DeClerck, Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev, 2010. 29(2): p. 249-61.
240. Fang, S. and P. Salven, Stem cells in tumor angiogenesis. J Mol Cell Cardiol, 2011. 50(2): p. 290-5.
241. Giaccia, A.J. and E. Schipani, Role of carcinoma-associated fibroblasts and hypoxia in tumor progression. Curr Top Microbiol Immunol, 2010. 345: p. 31-45.
242. Gerber, D.E., Targeted therapies: a new generation of cancer treatments. Am Fam Physician, 2008. 77(3): p. 311-9.
243. Aggarwal, S., Targeted cancer therapies. Nat Rev Drug Discov, 2010. 9(6): p. 427-8.
244. Folkman, J. and R. Kalluri, Cancer without disease. Nature, 2004. 427(6977): p. 787.
245. Azam, F., S. Mehta, and A.L. Harris, Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer, 2010. 46(8): p. 1323-32.
246. Ebos, J.M., C.R. Lee, and R.S. Kerbel, Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res, 2009. 15(16): p. 5020-5.
247. Bergers, G. and D. Hanahan, Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer, 2008. 8(8): p. 592-603.
248. Rosenberg, S.A., et al., Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer, 2008. 8(4): p. 299-308.
249. 山田慶兒, 中國古代醫學的形成. 東大 2003.
250. 陳奇, 中成藥名方藥理臨床. 北京:人民衛生出版社, 1998. 104(第一版).
251. Valdez, G., et al., Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A, 2010. 107(33): p. 14863-8.
252. 行政院衛生署, http://www.fda.gov.tw/TC/index.aspx.
253. Jemal, A., E. Ward, and M. Thun, Declining death rates reflect progress against cancer. PLoS One, 2010. 5(3): p. e9584.
254. Sawyers, C.L., Cancer: mixing cocktails. Nature, 2007. 449(7165): p. 993-6.
255. PU, U., Huang Di Nei Jing Su Wen: Nature, Knowledge, Imagery in an Ancient Chinese Medical Text University of California Press, 2003: p. 536.
256. Zhang Z, Y.F., Wiseman N, Mitchell C, Feng Y, Shang Han Lun: On Cold Damage, Translation and Commentaries Paradigm Publications., 1999: p. 746.
257. Sung, J.J., et al., Agreements among traditional Chinese medicine practitioners in the diagnosis and treatment of irritable bowel syndrome. Aliment Pharmacol Ther, 2004. 20(10): p. 1205-10.
258. Zhang, G.G., et al., The variability of TCM pattern diagnosis and herbal prescription on rheumatoid arthritis patients. Altern Ther Health Med, 2004. 10(1): p. 58-63.
259. Wiseman N, W.S., Ye F, Jin Gui Yao Lue – Essential Prescriptions of the Golden Coffer Paradigm Publications., Summer 2009. in press.
260. Harris, E.S., et al., Heavy metal and pesticide content in commonly prescribed individual raw Chinese Herbal Medicines. Sci Total Environ, 2011. 409(20): p. 4297-305.
261. Patwardhan, B., et al., Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med, 2005. 2(4): p. 465-73.
262. Lai, J.N., C.T. Wu, and J.D. Wang, Prescription pattern of chinese herbal products for breast cancer in taiwan: a population-based study. Evid Based Complement Alternat Med, 2012. 2012: p. 891893.
263. Lai, J.N., et al., Increased risk for invasive breast cancer associated with hormonal therapy: a nation-wide random sample of 65,723 women followed from 1997 to 2008. PLoS One, 2011. 6(10): p. e25183.
264. website., N., http://w3.nhri.org.tw/nhird/en/index.htm. Accessed
2011 Sep 17.
265. Wu FM, H.M., Collected Exegesis of Recipes, Wang Ang (1682). ACME Publishing, (in Chinese). 2001.
266. Hsieh, H.Y., P.H. Chiu, and S.C. Wang, Epigenetics in traditional chinese pharmacy: a bioinformatic study at pharmacopoeia scale. Evid Based Complement Alternat Med, 2011. 2011: p. 816714.
267. Wang S-C, P.A., DNA Methylation Microarrays: Experimental Design and Statistical Analysis CRC Press. 2008: p. 256.
268. computing., R.D.C.T.R.A.l.a.e.f.s., (Vienna, Austria): R Foundation for Statistical Computing. ISBN 3-900051-07-0.
269. Yu, M.C. and J.M. Yuan, Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol, 2002. 12(6): p. 421-9.
270. Adamic, L., Complex systems: Unzipping Zipf’s law. Nature, 2011. 474(7350): p. 164-5.
271. LiShizhen, (1578) Ben Cao Gang Mu. Beijing: People Hygiene Publishing House,, 1982.
272. Available: http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_tx.htm. Accessed 2011 Sep 1.
273. Cuzick, J., et al., Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol, 2009. 10(5): p. 501-7.
274. Friis, S., et al., Aspirin and other non-steroidal anti-inflammatory drugs and risk of colorectal cancer: a Danish cohort study. Cancer Causes Control, 2009. 20(5): p. 731-40.
275. Chen, Z. and P. Wang, Clinical Distribution and Molecular Basis of Traditional Chinese Medicine ZHENG in Cancer. Evid Based Complement Alternat Med, 2012. 2012: p. 783923.
276. Cheng, C.W., et al., The Quintessence of Traditional Chinese Medicine: Syndrome and Its Distribution among Advanced Cancer Patients with Constipation. Evid Based Complement Alternat Med, 2012. 2012: p. 739642.
277. Sweatt, J.D., Neuroscience. Epigenetics and cognitive aging. Science, 2010. 328(5979): p. 701-2.
278. Wolffe, A.P., Chromatin remodeling: why it is important in cancer. Oncogene, 2001. 20(24): p. 2988-90.
279. Cedar, H. and Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet, 2009. 10(5): p. 295-304.
280. Deng, G., et al., Regional hypermethylation and global hypomethylation are associated with altered chromatin conformation and histone acetylation in colorectal cancer. Int J Cancer, 2006. 118(12): p. 2999-3005.
281. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. N Engl J Med, 2013.
282. Minucci, S. and P.G. Pelicci, Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer, 2006. 6(1): p. 38-51.
283. Chai, G., et al., HDAC inhibitors act with 5-aza-2’-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells. PLoS One, 2008. 3(6): p. e2445. |