博碩士論文 965401601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:18.220.182.13
姓名 范文長(PHAM VAN TRUONG)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 整合局部與全域資訊的等高線之主動輪廓於影像切割應用
(Local and Global Level Set based Active Contours with Applications to Image Segmentation)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 影像切割是電腦視覺與物件辨識技術中重要的分枝.影像切割可視為將影像分割成前景與背景的技術. 目前存在的影像切割技術,如直方圖閥值(histogram thresholding), 區域成長分割法(region-growing), 群集法(clustering)等. 在這些分割技術中,變分方法(variational methods)已被證明是一個可行的影像切割方法。這些方法具有完善數學模型的優點。在影像切割中,透過求解能量泛函問題,變分方法可以萃取物體的邊。
本論文旨在開發基於變分方法的影像切割模型。在這篇論文中的第一個模型,我們提出了一種無監督的主動輪廓的方法進行異構圖像分割。在模型中,我們定義了能量泛函,其中包括區域和全域的能量。本論文獨特地利用影像強度在每一個局部影像建立區域能量, 同時, 根據輪廓內外圈的影像強度機率分佈之亮度稠密度距離(density distance)計算全域能量. 區域能量適合處理強度不均勻之影像. 與此同時, 全域能量有助處理降低雜訊,初始輪廓位置和輪廓蔓延等問題. 本論文提出之數學模型以應用於各種不同形式醫學影像之影像分割問題. 如磁振造影(MRI),超音波(ultrasound),電腦斷層(CT)圖像以及在醫療影像之三維器官模型等.
在本論文中提出的第二個模型解決影像中的不均勻性與快速收斂能量泛函最小值等問題. 首先, 我們整合內外圈每一個畫素的模糊隸屬函數(fuzzy membership function)
程度建立能量泛函.我們利用直接計算能量變化取代傳統梯度下降法計算能量泛函最小值問題. 本論文提出之數學模型有助於影像分割的快速收斂以及模糊邊界與強度不均勻性.
摘要(英) Image segmentation is an important branch of computer vision and object recognition. It can be considered as the technique of separating an image into semantic parts including foreground and background. There have been many methods for image segmentation such as histogram thresholding, region-growing, clustering, and so forth. Among these techniques, variational methods have been shown to be a promising approach for performing the segmentation task. Variational methods have many advantages since they benefit from well-established mathematical models. In the context of image segmentation, variational methods allow extracting object boundaries through solving optimization problems for energy functionals associated with the image to be segmented.
This dissertation aims at developing models for image segmentation based on variational methods. In the first model in the thesis we propose an unsupervised active contour approach for heterogeneous image segmentation. In the model, we introduce an energy functional which includes both local and global energies. In particular, we construct the local energy using intensity in each local region of image. We concurrently establish the global energy based on the density distance between intensity probability distribution functions inside and outside the contour. The local energy allows dealing with images with intensity inhomogeneity. Meanwhile, the global energy helps alleviate problems associated with noise, initial contour position, and contour spilling. The model is then applied to segment different medical image modalities, such as MRI, Ultrasound, CT images, as well as 3D organs in a medical data set.
The second model presented in this dissertation involves addressing inhomogeneity in images and achieving fast convergence in minimizing the energy functional. In this proposed model, the degree of fuzzy membership function of each pixel to inside (or outside) contour is integrated into the energy functional. Especially, to minimize the energy functional, we directly calculate the alteration of the energy, instead of using gradient descent approach as in classical approaches. The proposed model therefore fast converges to the segmentation solution. In addition, the model can facilitate the segmentation task even in the presence of blurred boundary, and intensity inhomogeneity.
In sum, this dissertation presents two level set-based active contour models to perform image segmentation tasks. The proposed models utilize both global and local information to guide the motion of contour which helps the models effectively dealing with inhomogeneous images.
關鍵字(中) ★ 主動輪廓
★ 影像切割
★ 整合局部與全域資訊
★ 模糊能量
★ 醫學影像切割
關鍵字(英) ★ Active Contours
★ Image Segmentation
★ Global and Local level set
★ Fuzzy Energy
★ Medical Image Segmentation
論文目次 摘要............................................................................................................................................i
ABSTRACT..............................................................................................................................ii
ACKNOWLEDGEMENTS.....................................................................................................iv
TABLE OF CONTENTS.........................................................................................................vi
LIST OF FIGURES................................................................................................................viii
LIST OF TABLES...................................................................................................................xi
NOMENCLATURE................................................................................................................xii
Chapter I Introduction............................................................................................................1
1.1 Motivation...............................................................................................................1
1.2 Objectives................................................................................................................4
1.3 Dissertation Structure............................................................................................. 4
Chapter II Background...........................................................................................................6
2.1 Parametric Active Contour Models.........................................................................6
2.2 Level Set Methods...................................................................................................9
2.3 Level Set-based Active Contour Models...............................................................12
2.3.1 Edge-based Active Contours..................................................................12
2.3.2 Region-based Active Contours...............................................................15
2.4 Summary................................................................................................................18
Chapter III Active Contours Driven by Density Distance and Local Fitting Energy.....19
3.1 Motivation.............................................................................................................19
3.2 Proposed Model ....................................................................................................26
3.3 Experimental Results and Method Comparison....................................................34
3.3.1 Experimental Results..............................................................................34
3.3.2 Application to 3D Head-and-Neck CT Scan Data…………..................38
3.4 Validation and Comparison……………………...………………………………43
3.4.1 Comparative Study…………………………………………..…....…...43
3.4.2 Performance with Noisy Images…………………………….………....49
3.5 Summary……………………………………………………………..………......51
Chapter IV Global and Local Fuzzy Energy-Based Active Contour Model…………....54
4.1 Motivation……………………………………………………………..…….......54
4.2 Fuzzy Energy-based Active Contour Model………………………………..…...58
4.3 The Proposed Model………………………………………………......................59
4.3.1 The Model Description……………………………………..….............59
4.3.2 Numerical Approximation……………………………………...…...…63
4.4 Experimental Results and Method Comparison………...……………...………..65
4.4.1 Experimental Results……………………………………………...…...65
4.4.2 Method Comparison……………………………………………….......76
4.5 Summary………………………………………………………..…………..........79
Chapter V Concluding Remarks and Future Works.........................................................80
5.1 Conclusion.............................................................................................................80
5.2 Future Works.........................................................................................................81
Bibliographies........................................................................................................................83
Appendix................................................................................................................................93
A. Calculating the alteration of energy when we changing the value of degree
membership function……………………………………..……………………...93
B. Publications during Ph.D. studies…………………………………………….......99
參考文獻 [1] L. He, Z. Peng, B. Everding, X. Wang, C. Han, K. Weiss, and G. Wee, "A comparative study of deformable contour methods on medical image segmentation," Image and Vision Computing, vol. 26, no. 2, pp. 141-163, 2008.
[2] U. Vovk, F. Pernuˇs, and B. Likar, "A Review of Methods for Correction of Intensity Inhomogeneity in MRI," IEEE Trans. Medical Imaging, vol. 26, no. 3, pp. 405-421, 2007.
[3] K.K. Shyu, V.T. Pham, T.T. Tran, and P.L. Lee, "Unsupervised active contours driven by density distance and local fitting energy with applications to medical image segmentation," Machine Vision and Applications, vol. 23, no. 6, pp. 1159-1175, 2012.
[4] A. Gooya, H. Liao, K. Matsumiya, K. Masamune, Y. Masutani, and T. Dohi, "A variational method for geometric regularization of vascular segmentation in medical images," IEEE Trans. Image Processing, vol. 17, no. 8, pp. 1295-1312, 2008.
[5] D. Cremers, M. Rousson, and R. Deriche, "A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape," International Journal of Computer Vision, vol. 72, no. 2, pp. 195-215, 2007.
[6] R.C. Gonzalez and R.E. Woods, Digital Image Processing, 3rd ed ed, Pearson Prentical Hall, 2008.
[7] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag,New York, 2002.
[8] A. Blake and M. Isard, Active Contours, Springer, Cambridge, 1998.
[9] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," International Journal of Computer Vision, vol. 1, no. 4, pp. 321-331, 1988.
[10] V. Caselles, F. Catte, T. Coll, and F. Dibos, "A geometric model for active contours in image processing," Numerische Mathematik, vol. 66, no. 1, pp. 1-31, 1993.
[11] V. Caselles, R. Kimmel, and G. Sapiro, "Geodesic active contours," International Journal of Computer Vision, vol. 22, no. 1, pp. 61-79, 1997.
[12] S. Zhu and A. Yuille, "Region competition: Unifying snakes, region growing, and bayes model for multiband image segmentation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 9, pp. 884-900, 1996.
[13] R. Ronfard, "Region-based strategies for active contour models," International Journal of Computer Vision, vol. 13, no. 2, pp. 229-251, 1994.
[14] T. Chan and L. Vese, "Active contours without edges," IEEE Trans. Image Processing, vol.10, no. 2, pp. 266-277, 2001.
[15] S. Lankton and A. Tannenbaum, "Localizing region-based active contour," IEEE Trans.Image Processing, vol. 17, no. 11, pp. 2029-2039, 2008.
[16] C. Li, C. Kao, J.C. Gore, and Z. Ding, "Minimization of region-scalable fitting energy for image segmentation," IEEE Trans. Image Processing, vol. 17, no. 10, pp. 1940-1949, 2008.
[17] D. Mumford and J. Shah, "Optimal approximations by piecewise smooth functions and associated variational problems," Communication on Pure and Applied Mathematics vol.42, no. 5, pp. 577-685, 1989.
[18] L. He, S. Zheng, and L. Wang, "Integrating local distribution information with level set for boundary extraction," Journal of Visual Communication and Image Representation vol. 21,no. 4, pp. 343-354, 2010.
[19] S. Osher and J.A. Sethian, "Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulation," Journal of Computational Physics, vol. 79, no., pp.12-49, 1988.
[20] T.T Tran, V.T. Pham, and K.K. Shyu, "Zernike Moment and Local Distribution Fuzzy Energy based Active Contours for Image Segmentation," Signal, Image and Video Processing, DOI: 10.1007/s11760-012-0415-0, 2012.
[21] K.K. Shyu, T.T. Tran, V.T. Pham, P.L. Lee, and L.J. Shang, "Fuzzy distribution fitting energy-based active contours for image segmentation," Nonlinear Dynamics, vol. 69, no. 1-2, pp. 295-312, 2012.
[22] J. Piovano, M. Rousson, and T. Papadopoulo, "Efficient segmentation of piecewise smooth images," in: Proc. of European Conference in Computer Vision (ECCV), 2007. pp. 709-720.
[23] K.W.S. Sum and P.Y.S. Cheung, "Vessel extraction under non-uniform illumination: a level set approach," IEEE Trans. Biomedical Engineering vol. 55, no. 1, pp. 358-360, 2008.
[24] K.K. Shyu, V.T. Pham, T.T. Tran, and P.L. Lee, "Global and local fuzzy energy based-active contours for image segmentation," Nonlinear Dynamics, vol. 67, no. 2, pp. 1559-1578, 2012.
[25] L. Amini, H. Soltanian-Zadeh, C. Lucas, and M. Gity, "Automatic segmentation of thalamus from brain MRIintegrating fuzzy clustering and dynamic contours," IEEE Trans.Biomedical Enginerring vol. 51, no. 5, pp. 800-811, 2004.
[26] M. Rousson, C. Lenglet, and R. Deriche, "Level set and region based propagation for diffusion tensor MRI segmentation," in: Poc. of Workshop Computer Vision Approaches to Medical Image Analysis and Mathematical Methods in Biomedical Image Analysis 2004. pp. 123-134.
[27] A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum, "A geometric snake model for segmentation of medical imagery," IEEE Trans. Medical Imaging, vol. 16, no. 2, pp. 199-209, 1997.
[28] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press,Cambridge, 1999.
[29] S. Osher and N. Paragios, "Level Set Methods", in Geometric Level Set Methods in Imaging,Vision and Graphics, Springer-Verlag NY, 2003.
[30] C.L. Epstein and M. Gage, The curve shortening flow. in Wave Motion: Theory, Modeling,and Computation, Springer-Verlag, New York, 1987.
[31] R. Malladi and J. Sethian, "Image processing via level set curvature flow," in: Proc. of National Academy of Science, 1995. pp. 7046–7050.
[32] R. Malladi, J. Sethian, and C. Vemuri, "Shape modeling with front propagation: a level set approach," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158-175, 1995.
[33] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, "Gradient flows and geometric active contour models," in: Proc. of IEEE International Conference on Computer Vision, 1995. pp. 810-815.
[34] G. Sapiro, "Color snakes," Computer Vision and Image Understanding, vol. 68, no. 2, pp.247-253, 1997.
[35] L.D. Cohen, "On Active Contour Models and Balloons," Computer Vision Graphics Image Processing, vol. 53, no. 2, pp. 211-218, 1991.
[36] L. Vese and T. Chan, "A multiphase level set framework for image segmentation using the Mumford and Shah model," International Journal of Computer Vision, vol. 50, no. 3, pp.271-293, 2002.
[37] C. Li, C. Kao, C. Gui, and M.D. Fox, "Level set evolution without re-inittialization," in: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005. pp.430-436.
[38] A. Tsai, A. Yezzi, and A.S. Willsky, "Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification," IEEE Trans. Image Processing, vol. 10, no. 8, pp. 1169-1186, 2001.
[39] V. Leemput, K. Maes, D. Vandermeulen, and P. Suetens, "Automated model-based bias field correction of MR images of the brain," IEEE Trans. Medical Imaging, vol. 18, no. 10,
pp. 885-896, 1999.
[40] Y.J. Chiu, V.T. Pham, T.T. Tran, and K.K. Shyu, "Evaluation of Active Contour on Medical Inhomogeneous Image Segmentation," in: Proc. of the 3rd IEEE International Conference on Computer Science and Information Technology, 2010. pp. 311-314.
[41] A. Ghanei, H. Soltanian-Zadeh, and J.P. Windham, "Segmentation of hippocampus from brain MRI using deformable contours," Computerize Medical Imaging and Graphics, vol.22, no. 3, pp. 203-216, 1998.
[42] I.B. Ayed, S. Li, and I. Ross, "Level set image segmentation with a statistical overlap constraint," in: Proc. of Information Processing in Medical Imaging (IPMI), 2009. pp.589-601.
[43] B. Song and T. Chan, A Fast Algorithm for Level Set Based Optimization, in UCLA CAM Report 02-68. 2002.
[44] V.T. Pham, T.T. Tran, Y.J. Chiu, and K.K. Shyu, "Region-aided Geodesic Active Contour Model for Image Segmentation," in: Proc. of the 3rd IEEE International Conference on Computer Science and Information Technology, 2010. pp. 318-321.
[45] T.T. Tran, V.T. Pham, Y.J. Chiu, and K.K. Shyu, "Image Segmentation based on Geodesic aided Chan-Vese Model," in: Proc. of the 3rd IEEE International Conference on Computer
Science and Information Technology, 2010. pp. 315-317.
[46] L. Grady and C. Alvino, "The piecewise smooth Mumford-Shah functional on an arbitrary graph," IEEE Trans. Image Processing, vol. 18, no. 11, pp. 2547-2561, 2009.
[47] X. Bresson and T. Chan, Non-local unsupervised variational image segmentation models, in UCLA CAM Report 08-67. 2008.
[48] J. Malcolm, Y. Rathi, and A. Tannenbaum, "Tracking through clutter using graph cuts. In: Proc. of Non-rigid Registration and Tracking Through Learning," in: Proc. of IEEE International. Conference on Computer Vision, 2007. pp.
[49] N. Xu, N. Ahuja, and R. Bansal, "Object segmentation using graph cuts based active contours.," Computer Vision Image Understanding, vol. 107, no. 3, pp. 210-224, 2007.
[50] Y. Boykov and V. Kolmogorov, "Computing geodesics and minimal surfaces via graph cuts," in: Proc. of IEEE International Conference on Computer Vision (ICCV), 2003. pp.26-33.
[51] B. Sumengen and B. Manjunath, "Graph partitioning active contours (GPAC) for image segmentation," IEEE Trans Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp.509-521, 2006.
[52] T. Brox: From pixels to regions: Partial differential equations in image analysis. Saarland University,Germany (2005)
[53] T. Brox and D. Cremers, "On the statistical interpretation of the piecewise smooth Mumford Shah functional," in: Proc. of Scale Space Var. Met. Comput. Vision 2007. pp. 203-213.
[54] L. Wang, L. He, A. Mishra, and C. Li, "Active contour driven by local Gaussian distribution fitting Energy," Signal Processing vol. 89, no. 12, pp. 2435-2447, 2009.
[55] O. Michailovich, Y. Rathi, and A. Tannenbaum, "Image segmentation using active-contours driven by the Bhattacharyya gradient flow," IEEE Trans. Image Processing, vol. 16, no. 11,pp. 2787-2801, 2007.
[56] T. Georgiou, O. Michailovich, Y. Rathi, J. Malcolm, and A. Tannenbaum, "Distribution Metrics and Image Segmentation," Linear Algebra and its Applications, vol. 45, no. 2-3, pp.663-672, 2007.
[57] J. Kim, J. Fisher, A. Yezzi, M. Cetin, and A. Willsky, "A nonparametric statistical method for image segmentation using information theory and curve evolution," IEEE Trans. Image Processing, vol. 14, no. 10, pp. 1486-1502, 2005.
[58] T. Zhang and D. Freedman, "Improving performance of distribution tracking through background mismatch," IEEE Trans Pattern Analysis and Machine Intelligence, vol. 27,
no. 2, pp. 282-287, 2005.
[59] D. Freedman and T. Zhang, "Active contours for tracking distributions," IEEE Trans. Image Processing, vol. 13, no. 4, pp. 518-526, 2004.
[60] N. Houhou, J.P. Thiran, and X. Bresson, "Fast texture segmentation based on semi-local region descriptor and active contour," Numerical Mathematics: Theory, Methods and
Applications, vol. 2, no. 4, pp. 445-468, 2009.
[61] K. Ni, X. Bresson, T. Chan, and S. Esedoglu, "Local histogram based segmentation using the Wasserstein distance," International Journal of Computer Vision, vol. 84, no. 1, pp.97-111, 2009.
[62] A. Adam, R. Kimmel, and E. Rivlin, "On Scene Segmentation and Histograms-Based Curve Evolution," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp.1708-1714, 2009.
[63] G. Aubert, M. Barlaud, O. Faugeras, and S. Jehan-Besson, "Image segmentation using active contours: Calculus of variations or shape gradients?," SIAM Journal of Applied
Mathematics, vol. 63, no. 6, pp. 2128-2154, 2003.
[64] Y. Rathi, O. Michailovich, J. Malcolm, and A. Tannenbaum, "Seeing the Unseen: Segmenting with Distributions," in: Proc. of International Conference on Signal and Image Processing, 2006.
[65] T. Kailath, "The divergence and Bhattacharyya distance measures in signal selection," IEEE Trans. Communication Technology vol., no. 1, pp. 52-60, 1967.
[66] C. Xu and J. Prince, "Snakes, shapes, and gradient vector flow," IEEE Trans. Image Processing, vol. 7, no. 3, pp. 359-369, 1998.
[67] X. Xie and M. Mirmehdi, "MAC: Magnetostatic Active Contour Model," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 4, pp. 632-646, 2008.
[68] K. Zhang, H. Song, and L. Zhang, "Active Contours Driven by Local Image Fitting Energy," Pattern Recognition, vol. 43, no. 4, pp. 1199-1206, 2009.
[69] D.L. Pham and J.L. Prince, "An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities," Pattern Recognition Letter, vol. 20, no. 1, pp.57-68, 1999.
[70] M. Ahmed, S. Yamany, N. Mohamed, A. Farag, and T. Moriarty, "A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data," IEEE Trans.
Medical Imaging, vol. 21, no. 3, pp. 193-199, 2002.
[71] S. Li, T. Fevens, K. A., J. C., and S. Li, "Semi-automatic computer aided lesion detection in dental X-rays using variational level set.," Pattern Recognition, vol. 40, no. 10, pp. 2861–2873, 2007.
[72] N. Xu and N. Ahuja, "Object contour tracking using graph cuts based active contours," in:Proc. of IEEE International. Conference on Computer Vision, Rochester, New York, USA,2002. pp. 277-280.
[73] N. Xu, R. Bansal, and N. Ahuja, "Object segmentation using graph cuts based active contours," in: Proc. of IEEE International Conference Computer Vision and Pattern Recognition(CVPR), Madison, Wisconsin, USA, 2003. pp. 46-53.
[74] F. Gibou and R. Fedkiw, "A fast hybrid k-means level set algorithm for segmentation," in:Proc. of 4th Annual Hawaii International Conference on Statistics and Mathematics,Honolulu, Hawaii, USA, 2005. pp. 281-291.
[75] Z. Chen, T. Qui, and S. Ruan, "Fuzzy adaptive level set algorithm for brain tissue segmentation," in: Proc. of International Conference Signal Processing, Beijing, China,
2008. pp. 1047-1050.
[76] S. Krinidis and V. Chatzis, "Fuzzy energy-based active contour," IEEE Trans. Image Processing, vol. 18, no. 12, pp. 2747-2755, 2009.
[77] T.T. Tran, V.T. Pham, Y.J. Chiu, and K.K. Shyu, "Active Contour with Selective Local or Global Segmentation for Intensity Inhomogeneous Image," in: Proc. of the 3rd IEEE International Conference on Computer Science and Information Technology, 2010. pp.306-310.
[78] L. He and S. Osher, Solving the Chan-Vese model by a multiphase level set algorithm based on the topological derivative level set algorithm based on the topological derivative. 2006. UCLA CAM Report 06-56.
[79] Y. Pan, D.J. Birdwell, and S.M. Djouadi, "Efficient implementation of the Chan-Vese models without solving PDEs," in: Proc. of International Workshop On Multimedia Signal Processing, 2006. pp. 350-353.
[80] P. Perona and J. Malik, "Scale-Space and Edge Detection Using Anisotropic Diffusion,"IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629-639, 1990.
[81] L. Wang, C. Li, Q. Sun, D. Xia, and C. Kao, "Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation " Computerize Medical Imaging and Graphics, vol. 33, no. 7, pp. 520-531, 2009.
[82] T.T. Tran, V.T. Pham, K.K. Shyu, “Moment-based Alignment for Shape Prior with Variational B-Spline Level Set,” Machine Vision and Applications, (in press), DOI:
10.1007/s00138-013-0504-2, 2013.
指導教授 徐國鎧(KUO-KAI SHYU) 審核日期 2013-6-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明