參考文獻 |
[1]E. Velmre, "Thomas Johann Seebeck and his contribution to the modern science and technology," Electronics Conference (BEC), 2010 12th Biennial Baltic, Tallinn (2010).
[2]A. Majumdar, "Thermoelectricity in Semiconductor Nanostructures," Science 303, 777 (2004).
[3]D. M. Rowe, Thermoelectrics Handbook: Macro to Nano, (CRC press, New York, 2006).
[4]Y. G. Gurevich and G. N. Logvinov, "Physics of thermoelectric cooling," Semicond. Sci. Technol. 20, R57 (2005).
[5]A. F. Ioffe, Semiconductor thermoelements, and Thermoelectric cooling, (Infosearch Limited, London, 1957).
[6]H. J. Goldsmid and R. W. Douglas, "The use of semiconductors in thermoelectric refrigeration," Br. J. Appl. Phys. 5, 386 (1954).
[7]H. J. Goldsmid, A. R. Sheard, and D. A. Wright, "The performance of bismuth telluride thermojunctions," Br. J. Appl. Phys. 9, 365 (1958).
[8]L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Phys. Rev. B 47, 16631 (1993).
[9]L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Phys. Rev. B 47, 12727 (1993).
[10] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit," Phys. Rev. B 53, R10493 (1996).
[11]R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature 413, 597 (2001).
[12]T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, "Quantum Dot Superlattice Thermoelectric Materials and Devices," Science 297, 2229 (2002).
[13]K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, "Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit," Science 303, 818 (2004).
[14]B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, "Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites," Nano Lett. 12, 2077 (2012).
[15] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature 451, 163 (2008).
[16]A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard Iii, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168 (2008).
[17]B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science 320, 634 (2008).
[18]J. Zhou, Y. Wang, J. Sharp, and R. Yang, "Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites," Phys. Rev. B 85, 115320 (2012).
[19]A. Yadav, K. P. Pipe, W. Ye, and R. S. Goldman, "Thermoelectric properties of quantum dot chains," J. Appl. Phys. 105, 093711 (2009).
[20]Y.-M. Lin and M. S. Dresselhaus, "Thermoelectric properties of superlattice nanowires," Phys. Rev. B 68, 075304 (2003).
[21]D. M. T. Kuo and Y.-C. Chang, "Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots," Nanoscale Res. Lett. 7, 257 (2012).
[22]D. M. T. Kuo and Y.-C. Chang, "Thermoelectric and thermal rectification properties of quantum dot junctions," Phys. Rev. B 81, 205321 (2010).
[23]R. Franco, J. SilvaValencia, and M. S. Figueira, "Thermopower and thermal conductance through parallel coupled quantum dots," J. Appl. Phys. 103, 07B726 (2008).
[24]Q. Wang, H.-Q. Xie, Y.-H. Nie, and W. Ren, "Enhancement of thermoelectric efficiency in triple quantum dots by the Dicke effect," Phys. Rev. B 87, 075102 (2013).
[25]J. Liu, Q.-F. Sun, and X. C. Xie, "Enhancement of the thermoelectric figure of merit in a quantum dot due to the Coulomb blockade effect," Phys. Rev. B 81, 245323 (2010).
[26]P. Trocha and J. Barnaś, "Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena," Phys. Rev. B 85, 085408 (2012).
[27]F. Chi, J. Zheng, X.-D. Lu, and K.-C. Zhang, "Thermoelectric effect in a serial two-quantum-dot," Phys. Lett. A 375, 1352 (2011).
[28]M. Wierzbicki and R. Swirkowicz, "Influence of interference effects on thermoelectric properties of double quantum dots," Phys. Rev. B 84, 075410 (2011).
[29]D. M. T. Kuo and Y.-C. Chang, "Tunneling Current Spectroscopy of a Nanostructure Junction Involving Multiple Energy Levels," Phys. Rev. Lett. 99, 086803 (2007).
[30]D. M. T. Kuo, S.-Y. Shiau, and Y.-C. Chang, "Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system," Phys. Rev. B 84, 245303 (2011).
[31]C. Niu, L.-J. Liu, and T.-H. Lin, "Coherent transport through a coupled-quantum-dot system with strong intradot interaction," Phys. Rev. B 51, 5130 (1995).
[32]J. C. Inkson, Many-body theory of solids: an introduction, (眾光文化事業有限公司, 1984).
[33]Y. Meir and N. S. Wingreen, "Landauer formula for the current through an interacting electron region," Phys. Rev. Lett. 68, 2512 (1992).
[34] D. M. T. Kuo and Y.-C. Chang, "Thermoelectric Properties of a Semiconductor Quantum Dot Chain Connected to Metallic Electrodes," arXiv:1209.0506v3
[35]C. Kittle, Introduction to Solid State Physics, (WILEY, 2004).
[36]H. B. Callen, "The Application of Onsager’s Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects," Phys. Rev. 73, 1349 (1948).
[37]A. Khitun, A. Balandin, and K. L. Wang, "Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons," Superlatt. Microstruct. 26, 181 (1999).
[38]L. G. C. Rego and G. Kirczenow, "Quantized Thermal Conductance of Dielectric Quantum Wires," Phys. Rev. Lett. 81, 232 (1998).
[39]M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen, "Perspectives on thermoelectrics: from fundamentals to device applications," Energy Environ. Sci. 5, 5147 (2012).
[40]T. Markussen, A.-P. Jauho, and M. Brandbyge, "Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics," Phys. Rev. Lett. 103, 055502 (2009).
[41]D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G. Schmidt, "Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering," Phys. Rev. B 84, 165415 (2011).
[42]Q. Wang, H.-Q. Xie, H.-J. Jiao, Z.-J. Li, and Y.-H. Nie, "Spin-dependent thermoelectric transport through double quantum dots," Chin. Phys. B 21, 117310 (2012).
[43]C. W. J. Beenakker and A. A. M. Staring, "Theory of the thermopower of a quantum dot," Phys. Rev. B 46, 9667 (1992).
[44]D. M. T. Kuo and Y.-C. Chang, "Bipolar Thermoelectric Effect in a Serially Coupled Quantum Dot System," Jpn. J. Appl. Phys. 50, 105003 (2011).
[45]J. Ren, J.-X. Zhu, J. E. Gubernatis, C. Wang, and B. Li, "Thermoelectric transport with electron-phonon coupling and electron-electron interaction in molecular junctions," Phys. Rev. B 85, 155443 (2012).
[46]E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, Y. Huang, and L. Van Dao, "Silicon Quantum Dots in a Dielectric Matrix for All-Silicon Tandem Solar Cells," Adv. Optoelectron. 2007, 69578 (2007).
[47]L. Nataraj, N. Sustersic, M. Coppinger, L. F. Gerlein, J. Kolodzey, and S. G. Cloutier, "Structural and optoelectronic properties of germanium-rich islands grown on silicon using molecular beam epitaxy," Appl. Phys. Lett. 96, 121911 (2010).
[48]Y.-C. Tseng and D. M. T. Kuo, "Current Rectification and Seebeck Coefficient of Serially Coupled Double Quantum Dots," Jpn. J. Appl. Phys. 52, 014002 (2013).
[49]D. M. T. Kuo and Y.-C. Chang, "Multi-peak negative differential resistance device consisting of multiple quantum dots sandwiched between two metallic electrodes," Physica E 41, 395 (2009). |