博碩士論文 100521122 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.118.28.217
姓名 蔡家瑋(Chia-Wei Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 三個量子點串接耦合而成的分子之熱電特性分析:平均場論與多體理論之比較
(Thermoelectric properties of a serially coupled triple quantum dot molecule:comparison between the mean-field theory and the many-body theory)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中利用Hubbard模型與Anderson模型來研究三個量子點串接耦合而成的分子與金屬電極連接形成的接面系統之熱電特性。利用格林函數,我們可以得到量子點系統中的電子狀態密度。在格林函數的建立上,我們考慮了平均場論和多體理論兩種推導方法。我們藉由凱帝旭格林函數的技巧可以計算出系統中的電流及熱流,探討在線性響應區下的電導、塞貝克(Seebeck)係數、電子熱導以及熱電優值(ZT)。我們發現使用平均場論時所得到的熱電優值是高估於多體理論的。在低溫區,塞貝克係數會在Hubbard能隙中出現異常的提升。在高溫區,電導會高估。此外,我們利用多體理論的方法來分析及討論量子點大小不一致、量子點間電子跳躍強度和庫倫交互作用改變時對於熱電優值的影響。
摘要(英) The thermoelectric properties of a serially coupled triple quantum dot molecule connected to the metallic electrodes are theoretically studied by using the Hubbard model and Anderson model. The charge and heat currents are calculated in the framework of Keldysh Green’s function technique. The electrical conductance, Seebeck coefficient, electron thermal conductance and figure of merit(ZT) are calculated in the linear response regime. We consider two procedures to evaluate Green’s functions : mean-field theory and many-body theory. We find that the ZT calculated by the mean-field theory is overestimated, in the comparison between two theories. In the low temperature regime, Seebeck coefficient appears an abnormal enhancement in the Hubbard gap. In the high temperature regime, the electrical conductance is overestimated. Based on the many-body theory, the effects of quantum dot size fluctuation, interdot hopping strength variation and interdot Coulomb interaction change on the figure of merit are analyzed and discussed.
關鍵字(中) ★ 熱電
★ 量子點
★ 多體理論
★ 平均場論
★ 塞貝克效應
★ 奈米
關鍵字(英) ★ thermoelectric
★ quantum dot
★ many-body
★ mean-field
★ Seebeck effect
★ nano
論文目次 摘 要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第 1 章 、導論 1
1-1 前言 1
1-2 熱電元件的背景 1
1-3 文獻回顧 3
1-4 研究動機 6
第 2 章 、串接耦合量子點系統模型與電子傳輸特性 8
2-1 前言 8
2-2 理論模型 9
2-2.1 系統模型建構 10
2-2.2 穿隧電流及熱流 11
2-3 格林函數與電子傳輸係數 12
2-3.1 Hartree-Fock近似法 13
2-3.2 Many-body理論 14
2-4 電子佔據率對電子傳輸係數的影響 21
2-5 熱電響應函數及熱電參數的定義 26
第 3 章 、三個串接耦合量子點之熱電特性的平均場論近似與非平均場論近似之比較 30
3-1 前言 30
3-2 量子點能階位置的影響 31
3-2.1 平衡溫度在低溫區( T ≤ Γ0 ) 32
3-2.2 平衡溫度在中間溫區 38
3-2.3 平衡溫度在高溫區 41
3-3 量子點內庫倫交互作用的影響 45
3-4 電子跳躍強度改變下的影響 47
3-5 量子點能階不一致 51
3-6 小結 54
第 4 章 、考慮量子點間庫倫交互作用情況下的熱電特性 55
4-1 前言 55
4-2 共振通道耦合強度 55
4-3 系統量子點密度 57
4-3.1 量子點間庫倫交互作用 57
4-3.2 量子點間電子跳躍強度 60
4-4 量子點與電極的耦合強度 64
4-5 量子點能階與EF相對位置的影響 67
4-5.1 量子點能階在EF以上 67
4-5.2 量子點能階在EF以下 69
4-6 量子點大小不一致的影響 70
第 5 章 、結論 73
參考文獻 75
參考文獻 [1]E. Velmre, "Thomas Johann Seebeck and his contribution to the modern science and technology," Electronics Conference (BEC), 2010 12th Biennial Baltic, Tallinn (2010).
[2]A. Majumdar, "Thermoelectricity in Semiconductor Nanostructures," Science 303, 777 (2004).
[3]D. M. Rowe, Thermoelectrics Handbook: Macro to Nano, (CRC press, New York, 2006).
[4]Y. G. Gurevich and G. N. Logvinov, "Physics of thermoelectric cooling," Semicond. Sci. Technol. 20, R57 (2005).
[5]A. F. Ioffe, Semiconductor thermoelements, and Thermoelectric cooling, (Infosearch Limited, London, 1957).
[6]H. J. Goldsmid and R. W. Douglas, "The use of semiconductors in thermoelectric refrigeration," Br. J. Appl. Phys. 5, 386 (1954).
[7]H. J. Goldsmid, A. R. Sheard, and D. A. Wright, "The performance of bismuth telluride thermojunctions," Br. J. Appl. Phys. 9, 365 (1958).
[8]L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Phys. Rev. B 47, 16631 (1993).
[9]L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Phys. Rev. B 47, 12727 (1993).
[10] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit," Phys. Rev. B 53, R10493 (1996).
[11]R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature 413, 597 (2001).
[12]T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, "Quantum Dot Superlattice Thermoelectric Materials and Devices," Science 297, 2229 (2002).
[13]K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, "Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit," Science 303, 818 (2004).
[14]B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, "Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites," Nano Lett. 12, 2077 (2012).
[15] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature 451, 163 (2008).
[16]A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard Iii, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature 451, 168 (2008).
[17]B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science 320, 634 (2008).
[18]J. Zhou, Y. Wang, J. Sharp, and R. Yang, "Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites," Phys. Rev. B 85, 115320 (2012).
[19]A. Yadav, K. P. Pipe, W. Ye, and R. S. Goldman, "Thermoelectric properties of quantum dot chains," J. Appl. Phys. 105, 093711 (2009).
[20]Y.-M. Lin and M. S. Dresselhaus, "Thermoelectric properties of superlattice nanowires," Phys. Rev. B 68, 075304 (2003).
[21]D. M. T. Kuo and Y.-C. Chang, "Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots," Nanoscale Res. Lett. 7, 257 (2012).
[22]D. M. T. Kuo and Y.-C. Chang, "Thermoelectric and thermal rectification properties of quantum dot junctions," Phys. Rev. B 81, 205321 (2010).
[23]R. Franco, J. SilvaValencia, and M. S. Figueira, "Thermopower and thermal conductance through parallel coupled quantum dots," J. Appl. Phys. 103, 07B726 (2008).
[24]Q. Wang, H.-Q. Xie, Y.-H. Nie, and W. Ren, "Enhancement of thermoelectric efficiency in triple quantum dots by the Dicke effect," Phys. Rev. B 87, 075102 (2013).
[25]J. Liu, Q.-F. Sun, and X. C. Xie, "Enhancement of the thermoelectric figure of merit in a quantum dot due to the Coulomb blockade effect," Phys. Rev. B 81, 245323 (2010).
[26]P. Trocha and J. Barnaś, "Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena," Phys. Rev. B 85, 085408 (2012).
[27]F. Chi, J. Zheng, X.-D. Lu, and K.-C. Zhang, "Thermoelectric effect in a serial two-quantum-dot," Phys. Lett. A 375, 1352 (2011).
[28]M. Wierzbicki and R. Swirkowicz, "Influence of interference effects on thermoelectric properties of double quantum dots," Phys. Rev. B 84, 075410 (2011).
[29]D. M. T. Kuo and Y.-C. Chang, "Tunneling Current Spectroscopy of a Nanostructure Junction Involving Multiple Energy Levels," Phys. Rev. Lett. 99, 086803 (2007).
[30]D. M. T. Kuo, S.-Y. Shiau, and Y.-C. Chang, "Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system," Phys. Rev. B 84, 245303 (2011).
[31]C. Niu, L.-J. Liu, and T.-H. Lin, "Coherent transport through a coupled-quantum-dot system with strong intradot interaction," Phys. Rev. B 51, 5130 (1995).
[32]J. C. Inkson, Many-body theory of solids: an introduction, (眾光文化事業有限公司, 1984).
[33]Y. Meir and N. S. Wingreen, "Landauer formula for the current through an interacting electron region," Phys. Rev. Lett. 68, 2512 (1992).
[34] D. M. T. Kuo and Y.-C. Chang, "Thermoelectric Properties of a Semiconductor Quantum Dot Chain Connected to Metallic Electrodes," arXiv:1209.0506v3
[35]C. Kittle, Introduction to Solid State Physics, (WILEY, 2004).
[36]H. B. Callen, "The Application of Onsager’s Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects," Phys. Rev. 73, 1349 (1948).
[37]A. Khitun, A. Balandin, and K. L. Wang, "Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons," Superlatt. Microstruct. 26, 181 (1999).
[38]L. G. C. Rego and G. Kirczenow, "Quantized Thermal Conductance of Dielectric Quantum Wires," Phys. Rev. Lett. 81, 232 (1998).
[39]M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen, "Perspectives on thermoelectrics: from fundamentals to device applications," Energy Environ. Sci. 5, 5147 (2012).
[40]T. Markussen, A.-P. Jauho, and M. Brandbyge, "Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics," Phys. Rev. Lett. 103, 055502 (2009).
[41]D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G. Schmidt, "Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering," Phys. Rev. B 84, 165415 (2011).
[42]Q. Wang, H.-Q. Xie, H.-J. Jiao, Z.-J. Li, and Y.-H. Nie, "Spin-dependent thermoelectric transport through double quantum dots," Chin. Phys. B 21, 117310 (2012).
[43]C. W. J. Beenakker and A. A. M. Staring, "Theory of the thermopower of a quantum dot," Phys. Rev. B 46, 9667 (1992).
[44]D. M. T. Kuo and Y.-C. Chang, "Bipolar Thermoelectric Effect in a Serially Coupled Quantum Dot System," Jpn. J. Appl. Phys. 50, 105003 (2011).
[45]J. Ren, J.-X. Zhu, J. E. Gubernatis, C. Wang, and B. Li, "Thermoelectric transport with electron-phonon coupling and electron-electron interaction in molecular junctions," Phys. Rev. B 85, 155443 (2012).
[46]E.-C. Cho, M. A. Green, G. Conibeer, D. Song, Y.-H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, Y. Huang, and L. Van Dao, "Silicon Quantum Dots in a Dielectric Matrix for All-Silicon Tandem Solar Cells," Adv. Optoelectron. 2007, 69578 (2007).
[47]L. Nataraj, N. Sustersic, M. Coppinger, L. F. Gerlein, J. Kolodzey, and S. G. Cloutier, "Structural and optoelectronic properties of germanium-rich islands grown on silicon using molecular beam epitaxy," Appl. Phys. Lett. 96, 121911 (2010).
[48]Y.-C. Tseng and D. M. T. Kuo, "Current Rectification and Seebeck Coefficient of Serially Coupled Double Quantum Dots," Jpn. J. Appl. Phys. 52, 014002 (2013).
[49]D. M. T. Kuo and Y.-C. Chang, "Multi-peak negative differential resistance device consisting of multiple quantum dots sandwiched between two metallic electrodes," Physica E 41, 395 (2009).
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2013-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明