參考文獻 |
[1] D. Gullu and A. Demirbaş, “Biomass to methanol via pyrolysis process”, Energy Conversion and Management, Vol. 42, pp. 1349-1356, 2001.
[2] S. Prasad, A. Singh, N. Jain and H. C. Joshi, “Ethanol production from sweet sorghum syrup for utilization as automotive fuel in india”, Energy Fuels, Vol. 21, pp. 2415-2420, 2007.
[3] M. Shahli, “Study on the concentration of isooctane from oleic acid”, Master thesis, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Malaysia.
[4] C. O. Colpan, I. Dincer, and F. Hamdullahpur, “Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas”, International Journal of Hydrogen Energy, Vol. 32, pp. 787-795, 2007.
[5] S. Cordiner, M. Feola, V. Mulone and F. Romanelli, “Analysis of a SOFC energy generation system fuelled with biomass reformate”, Applied Thermal Engineering, Vol. 27, pp. 738-747, 2007.
[6] A. Galvagno, V. Chiodo, F. Urbani and F. Freni, “Biogas as hydrogen source for fuel cell applications”, International Journal of Hydrogen Energy, Vol. 38, pp. 3913 – 3920, 2013.
[7] T. D. Chung, W. T. Hong, Y. P. Chyou, D. D. Yu, K. F. Lin and C. H. Lee, “Efficiency analysis of solid oxide fuel cell power plant systems”, Applied Thermal Engineering, Vol. 28, pp. 933-941, 2008.
[8] W. T. Hong, T. H. Yen, T. D. Chung, C. N. Huang and B. D. Chen, “Efficiency analyses of ethanol-fueled solid oxide fuel cell power system”, Applied Energy, Vol. 88, pp. 3990-3998, 2011
[9] S. C. Singhal and K. Kendall, “High temperature solid oxide fuel cells: Fundamentals, design and applications”, Elsevier Science, Oxford, UK, 2003.
[10] B. C. H. Steele, “Material science and engineering: The enabling technology for the comer- cialisation of fuel cell systems”, Journal Material Science, Vol. 36, pp. 1053-1068, 2001.
[11] M. Sahibzada, B. C. H. Steele, K. Hellgardt, D. Barth, A. Effendi, D. Mantzavinos and I. S. Metcalfe, “Intermediate temperature solid oxide fuel cells operated with methanol fuels”, Chemical Engineering Science, Vol. 55, pp. 3077 - 3083, 2000.
[12] H. Qin, Z. Zhu, Q. Liu, Y. Jing, R. Raza, S. Imran, M. Singh, G. Abbas and B. Zhu, “Direct biofuel low-temperature solid oxide fuel cells”, Energy Environment Science, Issue 4, pp. 1273, 2011.
[13] P. Dokmaingam, J. T. S. Irvine, S. Assabumrungrat, S. Charojrochkul and N. Laosiripojana, “Modeling of IT-SOFC with indirect internal reforming operation fueled by methane : Effect of oxygen adding as autothermal reforming”, International journal of Hydrogen Energy, Vol. 35, pp. 13271-13279, 2010.
[14] M. C. Romano, V. Spallina and S. Campanari, “Integrating IT-SOFC and gasification combined cycle with methanation reactor and hydrogen firing for near zero-emission power generation from coal”, Energy Procedia, Vol. 4, pp. 1168-1175, 2011.
[15] A. K. Demin, P. E. Tsiakaras, V. A. Sobyanin and S. Y. Hramova, “Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor”, Solid State Ionics, Vol. 152-153, pp. 555-560, 2002.
[16] W. Jamsak, S. Assabumrungrat, P. L. Douglas, N. Laosiripojana and S. Charojrochkul, “Theoretical performance analysis of ethanol-fuelled solid oxide fuel cells with different electrolytes”, Chemical Engineering Journal, Vol. 119, pp. 11-18, 2006.
[17] A. L. Da Silva and I. L. Muller, “Thermodynamic study on glycerol-fuelled intermediate-temperature solid oxide fuel cells (IT-SOFCs) with different electrolytes”, International journal of Hydrogen Energy, Vol. 35, pp. 5580-5593, 2010.
[18] P. Ranran, W. Yan, Y. Lizhai and M. Zongqiang, “Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film”, Solid State Ionics, Vol. 177, pp. 389-393, 2006.
[19] P. I. Cowin, C. T. G. Petit, R. Lan, J. T. S Irvine, and S. Tao, “Recent progress in the development of anode materials for solid oxide fuel cells”, Advanced Energy Materials, Vol. 1, pp. 314-332, 2011.
[20] S. H Chan, H. K. Ho and Y. Tian, “Modelling of simple hybrid system solid oxide fuel cell and gas turbine power plant”, Journal of Power Sources, Vol. 109, pp. 111-120, 2002.
[21] L. Duan, B. He and Y. Yang, “Parameter optimization study on SOFC-MGT hybrid power system”, International Journal of Energy Research, Vol. 35, pp. 721-732, 2011.
[22] D. Cocco and V. Tola, “SOFC-MGT hybrid system power plants fueled by methane and methanol”, Biennial ASME Conference on Engineering System Design and Analysis, 8th, 2006.
[23] A. Srisiriwat, High temperature solid oxide fuel cell integrated with authothermal reformer”, IEEE International Conference on Power and Energy, 2th, 2008.
[24] Praharso, A. A. Adesina, D. L. Trimm and N. W. Cant, “Kinetic study of iso-octane steam reforming over a nickel-based catalyst”, Chemical Engineering Journal, Vol. 99, pp.131-136, 2004.
[25] L. Villegas, N. Guilhaume, H. Provendier, C. Daniel, F. Masset and C. Mirodatos, “A combined thermodynamic/experimental study for the optimisation of hydrogen production by catalytic reforming of isooctane”, Applied Catalyst A, Vol. 281, pp.75-83, 2005.
[26] A. Musa, A. Agina and M. Talbi,”Operating conditions on the performances of SOFC fuelled with methane”, International Conference on Renewable Energies and Power Quality, 12th, 2012.
[27] Y. Zhe, L. Qizhao and B. Zhu, “Thermodynamic analysis of ITSOFC co-generation system fueled by ethanol”, International Journal of Energy Research, Vol. 35, pp. 1025-1031, 2011.
[28] K. Faungnawakij, R. Kikuchi and K. Eguchi, “Thermodynamic evaluation of methanol steam reforming for hydrogen production”, Journal of Power Sources, Vol. 161, pp. 87-94, 2006.
[29] T. Ioannides, “Thermodynamic analysis of ethanol processors for fuel cell applications”, Journal of Power Sources, Vol. 92, pp.17-25, 2001.
[30] P. K. Cheekatamarla and W. J. Thomson, “Hydrogen generation from 2,2,4-trimethyl pentane reforming over molybdenum carbide at low steam-to-carbon ratios”, Journal of Power Sources, Vol. 156, pp. 520-524, 2006.
[31] A. M. Murshed, B. Huang and K. Nandakumar, “Control relevant modeling of planar solid oxide fuel cell system”, Journal of Power Sources, Vol. 163, pp. 830-845, 2007.
[32] S. Han, “Analysis of intermediate temperature solid oxide fuel cell combined system”, Master Thesis, Faculty of Mechanical Engineering, National Central university, Taiwan.
[33] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki and K. Takehira, “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol”, Applied Catalyst A, Vol. 263, pp. 249-253, 2004.
[34] S. Freni, G. Maggio and S. Cavallaro, “Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach”, Journal of Power Sources, Vol. 62, pp.67-73, 1996.
[35] G. Oscar, M. Flores and S. Ha, “Study of the performance of Mo2C for iso-octane steam reforming”, Catalysis Today, Vol.136, pp. 235-242, 2008.
[36] R. J. Braun, S. A. Klein and D. T Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications”, Journal of Power Sources, Vol. 158, pp. 1290-1305, 2006. |