參考文獻 |
[1] L.V. Chernomordik, M.M. Kozlov, Membrane Hemifusion: Crossing a Chasm in Two Leaps, Cell, 123 (2005) 375-382.
[2] R. Jahn, T. Lang, T.C. Südhof, Membrane Fusion, Cell, 112 (2003) 519-533.
[3] J.C. Shillcock, R. Lipowsky, Tension-induced fusion of bilayer membranes and vesicles, Nat Mater, 4 (2005) 225-228.
[4] P. Kasson, V.S. Pande, Control of membrane fusion mechanism by lipid composition: Predictions from ensemble molecular dynamics, PLOS Comput. Biol., 3 (2007) 2228-2238.
[5] A. Portis, C. Newton, W. Pangborn, D. Papahadjopoulos, Studies on the mechanism of membrane fusion: evidence for an intermembrane calcium(2+) ion-phospholipid complex, synergism with magnesium(2+) ion, and inhibition by spectrin, Biochemistry, 18 (1979) 780-790.
[6] R. Jahn, H. Grubmüller, Membrane fusion, Curr. Opin. Cell Biol., 14 (2002) 488-495.
[7] L. Yang, H.W. Huang, Observation of a Membrane Fusion Intermediate Structure, Science, 297 (2002) 1877-1879.
[8] L. Yang, H.W. Huang, A Rhombohedral Phase of Lipid Containing a Membrane Fusion Intermediate Structure, Biophys. J., 84 (2003) 1808-1817.
[9] S.-J. Marrink, A.E. Mark, Molecular View of Hexagonal Phase Formation in Phospholipid Membranes, Biophys. J., 87 (2004) 3894-3900.
[10] S.J. Marrink, A.E. Mark, The Mechanism of Vesicle Fusion as Revealed by Molecular Dynamics Simulations, J. Am. Chem. Soc., 125 (2003) 11144-11145.
[11] P.M. Kasson, N.W. Kelley, N. Singhal, M. Vrljic, A.T. Brunger, V.S. Pande, Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion, Proc. Natl. Acad. Sci., 103 (2006) 11916-11921.
[12] Y. Norizoe, K. Daoulas, M. Muller, Measuring excess free energies of self-assembled membrane structures, Faraday Discuss., 144 (2010) 369-391; discussion 445-381.
[13] Y. Kozlovsky, M.M. Kozlov, Stalk model of membrane fusion: solution of energy crisis, Biophys J, 82 (2002) 882-895.
[14] Y.G. Smirnova, S.J. Marrink, R. Lipowsky, V. Knecht, Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration, J Am Chem Soc, 132 (2010) 6710-6718.
[15] A. Grafmuller, J. Shillcock, R. Lipowsky, Pathway of membrane fusion with two tension-dependent energy barriers, Phys Rev Lett, 98 (2007) 218101.
[16] D. Mirjanian, A.N. Dickey, J.H. Hoh, T.B. Woolf, M.J. Stevens, Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion, The journal of physical chemistry. B, 114 (2010) 11061-11068.
[17] R. Schneggenburger, E. Neher, Presynaptic calcium and control of vesicle fusion, Curr. Opin. Neurobiol., 15 (2005) 266-274.
[18] J. Wilschut, N. Duzgunes, R. Fraley, D. Papahadjopoulos, Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents, Biochemistry, 19 (1980) 6011-6021.
[19] R. Ekerdt, D. Papahadjopoulos, Intermembrane contact affects calcium binding to phospholipid vesicles, Proc Natl Acad Sci U S A, 79 (1982) 2273-2277.
[20] L. Herbette, C.A. Napolitano, R.V. McDaniel, Direct determination of the calcium profile structure for dipalmitoyllecithin multilayers using neutron diffraction, Biophys. J., 46 (1984) 677-685.
[21] C. Altenbach, J. Seelig, Calcium binding to phosphatidylcholine bilayers as studied by deuterium magnetic resonance. Evidence for the formation of a calcium complex with two phospholipid molecules, Biochemistry, 23 (1984) 3913-3920.
[22] R. Dluhy, D.G. Cameron, H.H. Mantsch, R. Mendelsohn, Fourier transform infrared spectroscopic studies of the effect of calcium ions on phosphatidylserine, Biochemistry, 22 (1983) 6318-6325.
[23] Z.K. Issa, C.W. Manke, B.P. Jena, J.J. Potoff, Ca2+ Bridging of Apposed Phospholipid Bilayers, J. Phys. Chem. B, 114 (2010) 13249-13254.
[24] H.H. Tsai, W.X. Lai, H.D. Lin, J.B. Lee, W.F. Juang, W.H. Tseng, Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: possible role in stalk formation during membrane fusion, Biochim. Biophys. Acta, 1818 (2012) 2742-2755.
[25] M. Ross, C. Steinem, H.-J. Galla, A. Janshoff, Visualization of Chemical and Physical Properties of Calcium-Induced Domains in DPPC/DPPS Langmuir−Blodgett Layers, Langmuir, 17 (2001) 2437-2445.
[26] L. Picas, M.T. Montero, A. Morros, M.E. Cabañas, B. Seantier, P.-E. Milhiet, J. Hernández-Borrell, Calcium-Induced Formation of Subdomains in Phosphatidylethanolamine−Phosphatidylglycerol Bilayers: A Combined DSC, 31P NMR, and AFM Study, J. Phys. Chem. B, 113 (2009) 4648-4655.
[27] Z.D. Schultz, I.M. Pazos, F.K. McNeil-Watson, E.N. Lewis, I.W. Levin, Magnesium-Induced Lipid Bilayer Microdomain Reorganizations: Implications for Membrane Fusion, J. Phys. Chem. B, 113 (2009) 9932-9941.
[28] Z.D. Schultz, I.W. Levin, Lipid Microdomain Formation: Characterization by Infrared Spectroscopy and Ultrasonic Velocimetry, Biophys. J., 94 (2008) 3104-3114.
[29] H. Binder, O. Zschörnig, The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes, Chem. Phys. Lipids, 115 (2002) 39-61.
[30] V. Knecht, S.-J. Marrink, Molecular Dynamics Simulations of Lipid Vesicle Fusion in Atomic Detail, Biophys. J., 92 (2007) 4254-4261.
[31] J.B. Klauda, R.M. Venable, J.A. Freites, J.W. O’Connor, D.J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A.D. MacKerell, R.W. Pastor, Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types, J. Phys. Chem. B, 114 (2010) 7830-7843.
[32] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys., 79 (1983) 926-935.
[33] L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, NAMD2: Greater scalability for parallel molecular dynamics, J. Comp. Phys., 151 (1999) 283-312.
[34] S.E. Feller, Y.H. Zhang, R.W. Pastor, B.R. Brooks, Constant-Pressure Molecular-Dynamics Simulation - the Langevin Piston Method, J. Chem. Phys., 103 (1995) 4613-4621.
[35] P.J. Steinbach, B.R. Brooks, New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation, J. Comput. Chem., 15 (1994) 667-683.
[36] J.-P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comp. Phys., 23 (1977) 327-341.
[37] H.-H.G. Tsai, J.-B. Lee, S.-S. Tseng, X.-A. Pan, Y.-C. Shih, Folding and membrane insertion of amyloid-beta (25-35) peptide and its mutants: Implications for aggregation and neurotoxicity, Proteins: Structure, Function, and Bioinformatics, 78 (2010) 1909-1925.
[38] H.H. Tsai, M. Reches, C.J. Tsai, K. Gunasekaran, E. Gazit, R. Nussinov, Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: Significant role of Asn ladder, Proc. Natl. Acad. Sci. U. S. A., 102 (2005) 8174-8179.
[39] C.-W. Tsai, N.-Y. Hsu, C.-H. Wang, C.-Y. Lu, Y. Chang, H.-H.G. Tsai, R.-C. Ruaan, Coupling Molecular Dynamics Simulations with Experiments for the Rational Design of Indolicidin-Analogous Antimicrobial Peptides, J. Mol. Biol., 392 (2009) 837-854.
[40] D.P. Tieleman, D. van der Spoel, H.J.C. Berendsen, Molecular Dynamics Simulations of Dodecylphosphocholine Micelles at Three Different Aggregate Sizes: Micellar Structure and Chain Relaxation, J. Phys. Chem. B, 104 (2000) 6380-6388.
[41] B. Lee, F.M. Richards, The interpretation of protein structures: Estimation of static accessibility, J. Mol. Biol., 55 (1971) 379-IN374.
[42] N. Galamba, Water’s structure around hydrophobic solutes and the iceberg model, The journal of physical chemistry. B, 117 (2013) 2153-2159.
[43] T.M. Raschke, M. Levitt, Nonpolar solutes enhance water structure within hydration shells while reducing interactions between them, Proc. Natl. Acad. Sci. U. S. A., 102 (2005) 6777-6782.
[44] B.A. Joughin, M.B. Yaffe, B. Tidor, Computational prediction of protein phosphopeptide-binding sites, Protein Science, 13 (2004) 146-146.
[45] R.I. MacDonald, Membrane fusion due to dehydration by polyethylene glycol, dextran, or sucrose, Biochemistry, 24 (1985) 4058-4066.
[46] J.J. Potoff, Z. Issa, C.W. Manke, B.P. Jena, Ca2+-dimethylphosphate complex formation: Providing insight into Ca2+-mediated local dehydration and membrane fusion in cells, Cell Biol. Int., 32 (2008) 361-366.
[47] A.A. Yaroslavov, A.V. Sybachin, E. Kesselman, J. Schmidt, Y. Talmon, S.A.A. Rizvi, F.M. Menger, Liposome Fusion Rates Depend upon the Conformation of Polycation Catalysts, J. Am. Chem. Soc., 133 (2011) 2881-2883.
[48] A.F. Smeijers, A.J. Markvoort, K. Pieterse, P.A.J. Hilbers, A Detailed Look at Vesicle Fusion, J. Phys. Chem. B, 110 (2006) 13212-13219.
[49] P.K. Kinnunen, Fusion of lipid bilayers: a model involving mechanistic connection to HII phase forming lipids, Chem. Phys. Lipids, 63 (1992) 251-258.
[50] S. Ohta-Iino, M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, A. Kusumi, Fast Lipid Disorientation at the Onset of Membrane Fusion Revealed by Molecular Dynamics Simulations, Biophys. J., 81 (2001) 217-224.
[51] S.J. Marrink, A.E. Mark, Molecular Dynamics Simulation of the Formation, Structure, and Dynamics of Small Phospholipid Vesicles, J. Am. Chem. Soc., 125 (2003) 15233-15242.
[52] V. Knecht, A.E. Mark, S.-J. Marrink, Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail, J. Am. Chem. Soc., 128 (2006) 2030-2034.
[53] X. Huang, C.J. Margulis, B.J. Berne, Dewetting-induced collapse of hydrophobic particles, Proc Natl Acad Sci U S A, 100 (2003) 11953-11958.
[54] R.D. Mountain, D. Thirumalai, Molecular dynamics simulations of end-to-end contact formation in hydrocarbon chains in water and aqueous urea solution, J Am Chem Soc, 125 (2003) 1950-1957.
[55] Z. Yang, B. Shi, H. Lu, P. Xiu, R. Zhou, Dewetting Transitions in the Self-Assembly of Two Amyloidogenic β-Sheets and the Importance of Matching Surfaces, J. Phys. Chem. B, 115 (2011) 11137-11144.
[56] M.G. Krone, L. Hua, P. Soto, R. Zhou, B.J. Berne, J.-E. Shea, Role of Water in Mediating the Assembly of Alzheimer Amyloid-β Aβ16−22 Protofilaments, J. Am. Chem. Soc., 130 (2008) 11066-11072.
[57] G. Hummer, S. Garde, A.E. Garcia, L.R. Pratt, New perspectives on hydrophobic effects, Chem. Phys., 258 (2000) 349-370.
[58] R. Zhou, X. Huang, C.J. Margulis, B.J. Berne, Hydrophobic Collapse in Multidomain Protein Folding, Science, 305 (2004) 1605-1609.
[59] P.M. Kasson, E. Lindahl, V.S. Pande, Water Ordering at Membrane Interfaces Controls Fusion Dynamics, J. Am. Chem. Soc., 133 (2011) 3812-3815. |