博碩士論文 100223017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.148.145.130
姓名 蕭千城(Chien-Cheng Hsiao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 工業區含氧有機氣體對空氣品質的可能影響
(Possible impact of industrial OVOC on air quality)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臭氧污染為「區域性的問題」,從前驅物VOCs及NOx之排放經光化學反應到臭氧產生與累積的尖峰通常差距2~6小時,在此時間內前驅物及臭氧易受到風的影響而傳輸至下風處,因此臭氧污染的影響範圍往往擴及都會區或工業區之下風郊區。但由於不同都會區VOCs、NOX來源及排放的特性(種類與強度)不同,且氣候、地形條件存在著很大的差異,因此在臭氧生成方面也有很大的不同及變異。
近地表臭氧為多數先進國家檢視空氣汙染的重點指標之一(Pollutant standard index, PSI),與懸浮微粒同存影響國內空氣品質最顯著的汙染物。近地表臭氧為二次汙染物,為前驅物質NOX和揮發性有機化合物(Volatile organic compounds, VOCs)經由光化反應而生成,但VOCs的種類繁多,且各物種對於臭氧生成的貢獻有所差異,因此在不同環境下,其臭氧生成的機制與特徵也隨之變化。在此選擇桃園地區進行觀測實驗,以即時觀測搭配採樣的方式,分析55種VOCs物質,以探討該地區近地表臭氧的來源,可作為訂立排放管制政策的參考。
桃園地區的VOCs排放結構較為複雜,涵蓋了交通源及工業源兩類,研究中發現交通源中之乙烯、丙烯、1, 2, 4-三甲基苯對於臭氧生成的貢獻較為顯著,相較於此,工業源的OVOC比例亦相當明顯,說明了該地區為複合型的VOCs排放特性。而藉由PTR-MS的觀測,獲得工業區的乙醛(acetaldehyde)濃度變化趨勢,本研究並引用各VOCs的最大增量反應性(Maximum incremental reactivity, MIR)加以計算,求得各VOCs物種的臭氧生成潛勢,並證實了醛類為該地區臭氧生成的重要物質之一。
為求了解醛類與各VOCs貢獻生成臭氧的重要性,藉由模式模擬來統整桃園地區之醛類排放量分佈情形,並輔助說明傳輸與化學機制過程,來剖析這些前驅物對於臭氧生成的貢獻量與影響的幅員範圍。觀測數據與模式模擬相輔相成,有助於全貌了解桃園地區臭氧生成,進而提供適切的管制策略,改善當地空氣品質。
摘要(英) Near-surface ozone is one of the key pollutants in most countries. Ozone is a secondary pollutant produced from photochemistry. It is formed via reactions involving NOX and volatile organic compounds (VOCs) in the presence of sunlight. NOx and VOCs together are called “ozone precursors”. Therefore, the abatement of precursors at minimum social and economical cost will be the key to reduce surface ozone and to improve air quality. However, VOCs are a collective term composing hundreds of thousands of airborne compounds with a wide range of ozone formation potentials (OFPs). As a result, it is not only economically viable but also sensible to only target species of high OFPs and abundance.
VOCs emissions in the Taoyuan area consist of two major sources of traffic and industrial emissions. As a key part of a collective field campaign aiming at reducing ozone in Taoyuan county, an on-line VOCs monitoring system was set up in Taoyuan city during 9/14/2012 - 11/23/2012 to investigate the composition and levels of more than 50 VOCs in a traffic ridden environment with hourly resolution. Moreover, off-line flask sampling in seven surrounding industrial parks was also performed to shed light to VOCs of industrial nature.
Two methods of maximum incremental reactivity (MIR) and relative consumption were used to reveal the critical VOCs to form ozone. High OFP VOCs such as propylene, ethylene and 1,2,4-trimethylbenzene were found to be significant with the city measurements. In the industrial parks, high levels of oxygenated VOCs (OVOC), especially acetaldehyde were observed. In one example (中壢工業區), OVOC can contribute more than 70% of the total VOCs level, and acetaldehyde alone can contribute as high as 80% in ozone formation. As a result, the role of ambient aldehyde as a primary pollutant and its possible removal from the industrial processes due to its strong OFP and toxicity is worth investigation.
關鍵字(中) ★ 光化測站
★ 揮發性有機氣體
★ 含氧揮發性有機氣體
★ 臭氧生成潛能
★ 最大增量反應
關鍵字(英) ★ PAMS
★ VOC
★ OVOC
★ OFP
★ MIR
論文目次 中文摘要 v
Abstract vii
謝誌 ix
目錄 xi
表目錄 xiv
圖目錄 xv
第一章 前言 1
1.1 臭氧簡介 (O3) 5
1.2 氮氧化物(NOx) 6
1.3 揮發性有機物(VOCs) 7
1.4 含氧揮發性有機物質(OVOC) 9
1.5 氫氧基(OH radical)形成機制 11
1.6 光化反應的作用機制 12
1.7 台灣光化測站之設立 18
1.8 研究目的 24
第二章 光化測站分析原理與系統運作 26
2-1、大氣臭氧前驅物分析原理與分析架構介紹 27
2-2、實驗儀器與分析方法 31
2-2.1 前處理-電子冷凍濃縮裝置 31
2-2.2 層析系統 35
2.2.3設備運作與儀器校正 42
2-3 採樣工作 50
2-3.1 自動採樣器 51
2-4 OVOC量測方法 53
2-5 PAMS-AQM臭氧診斷模式應用方法 58
第三章 設立光化測站之量測結果與探討 59
3-1設立光化測站 61
3-2 空氣品質監測站資料 (O3、NOx、氣象) 63
3-3 桃園農工光化物質和空品站數據之結合應用 66
3-3.1 高濃度物質甲苯、苯乙烯、環戊烷 68
3-4 桃園農工光化物質和萬華光化測站之比對 70
3-5 桃園光化物相關性與源的探討 74
3-5.1 PCA 討論 76
3-5.2比值圖和排放源特性討論 80
第四章 氣團老化估算VOCs物種臭氧生成潛勢 85
4-1乙苯(ethylbenzene)間,對二甲苯 (m,p-xylene)氣團老化關係 86
4-2消耗法(consumption)與MIR評定臭氧生成潛能(OFPs) 89
第五章 探討工業區排放源特徵 96
5-1採樣工作-七座工業區 97
5-2光化測站資料與工業區採樣整合比較(VOCs) 103
第六章 工業區OVOC與乙醛排放對空氣品質的可能影響 105
6-1工業區與交通源整合比較(OVOC) 106
6-2探討工業區排放特徵 109
6-3 PTR-MS探討工業區特殊排放(OVOC) 112
6-4以模式針對醛類排放熱點與二次臭氧差異分析 118
第七章 結論與未來展望 121
第八章 參考文獻 123
表目錄
表1-1汙染物濃度與污染副指標值對照表 3
表1-2 OH radical與烷類(alkanes)、烯類(alkenes)的反應速率常數 16
表1-3 OH radical與aromatic、OVOC的反應速率常數 18
表2-1 PAMS之56 VOCs 標準氣體(NMHCs)(Spectra, USA) 40
表2-2 光化測站標準品(C2-C5)之相對標準偏差 48
表2-3 光化測站標準品(C6-C11)之相對標準偏差 49
表3-1 萬華光化測站2011 9/14-11/23 資料之主成份分析結果 78
表3-2 桃園測站2012 9/14-11/23資料之主成份分析結果 79
表4-1各物種與乙苯之相關性 92
表4-2 alkanes、alkenes、aromatics、OVOC之MIR值 93
表5-1 採樣點編號、位置明細表 100
表6-1 觸發採樣數據表 114
表6-2 VOCs與OVOC代表性物種特徵表 117
圖目錄
圖1-1全國一般測站民國83至99年懸浮微粒PM10年平均濃度圖 4
圖1-2全國一般測站民國83至99年臭氧O3年平均濃度圖 4
圖1-3 (a) OVOC光化後生成二次臭氧 (b)OVOC光化學反應機制 10
圖1-4光化學煙霧形成圖 15
圖1-6目前台灣設立光化測站之地理分布圖 23
圖2-1 Heart-cut 技術的概念圖(a)分析C2-C5 (b) 分析C6-C11 30
圖 2-2 前濃縮儀器實圖 33
圖 2-3 前濃縮系統運作簡圖 33
圖 2-4 三重床吸附劑捕捉管 34
圖2-5 丁氏切換裝置與層析系統示意圖 37
圖2-6 自動化前濃縮系統與 GC-FID 39
圖2-7 儀器時序圖 39
圖2-5 架設光化測站設備運作示意圖 45
圖 2-6 PAMS 56種標準混合氣體之物種層析圖 45
圖2-7 輕碳(C2-C5)物種之檢量線(a)C2-C5總濃度(b)乙烷(ethane)(c)丙烷(propane) 46
圖2-8 重碳(C6-C11)物種之檢量線(a)C6-C11總濃度(b)苯(benzene) (c)甲苯(toluene) 47
圖2-7自動採樣器設備內部裝置 51
圖2-8 真空不鏽鋼瓶(2L)裝於限流管進行採樣 52
圖2-9 大氣中OVOC量測方法之大致分類 56
圖2-10 FTIR儀器設備圖 56
圖2-11 OVOCs經DNPH衍生化後以LC進行偵測 57
圖2-12 OVOCs經DNPH衍生化之分析樣品步驟圖 57
圖2-13 PTR-MS儀器設備圖 57
圖3-1 於桃園農工架設光化測站之儀器設備環境圖 62
圖3-2桃園空品測站之O3與NOx濃度逐時變化 64
圖3-3 (a)風速與空品站NMHC濃度逐時變化圖(b)風花圖 65
圖3-4 空氣品質監測站TNMHC與總光化物(虛線)逐時濃度比較 67
圖3-5 風速與輕碳(ethane)和重碳(toluene)的逐時濃度變化 67
圖 3-6 桃園測站測得三個含量較高的光化物種逐時濃度與風向間的變化關係。(a)甲苯、(b)苯乙烯、(c)環戊烷 69
圖 3-7 萬華測站(虛線)桃園測站(實線)總物種逐時濃度圖 72
圖 3-8桃園測站與萬華測站臭氧前驅物總量百分比長條圖 73
圖3- 9 9/14-11/13期間桃園農工光化測站之(a) aromatic,乙苯與間、對-二甲苯(b) alkane,丙烷與丁烷 (c) alkene,丙烯和乙烯 75
圖3-10 比值分析圖,乙烯和丙烯與其他物種比較(a)丙烷(b)乙苯(c)間,對二甲苯 83
圖3-11 比值分析圖 (a)凸顯苯乙烯的非交通排放特徵(b)凸顯工業排放的代表性物種(c)凸顯液化石油氣 84
圖4-1乙苯與間,對二甲苯關係圖 87
圖4-2 氣團老化指標概念示意圖 88
圖5-1 桃園測站鄰近工業區分布地圖 99
圖5-2 採樣方式架構圖 102
圖5-3工業區代表性物種(a)天然氣 (b)液化石油氣(c)工業源 104
圖6-1 採樣百分比堆疊圖(a)物種濃度(b)換算MIR 108
圖6-2桃園七大工業區採樣之OVOC圓餅圖(a)濃度數據(b)MIR 111
圖6-3交通源採樣之OVOC圓餅圖(a)濃度數據 (b)MIR數據 111
圖6-4 乙醛分鐘平均逐時濃度圖與採樣資料 115
圖6-5 乙醛分鐘平均逐時濃度圖與採樣資料(圖6-4藍框範圍) 115
圖6-6 中壢工業區觸發採樣之物種濃度長條堆疊圖與乙醛比較 116
圖6-7 中壢工業區觸發採樣之物種MIR長條堆疊圖與乙醛比較 116
圖6-8 甲醛的排放熱點 119
圖6-9 乙醛的排放熱點 119
圖6-10 模式針對下風處臭氧進行分析管制成效 120
參考文獻 Arey, J., Winer, A.M., Atkinson, R., Aschmann, S.M., Long, W.D., Morrison, C.L., Olszyk, D.M., 1991. Terpenes emitted from agricultural species found in California’s Central Valley. J. Geophys. Res., [Atmos.] 96, 9329-9336.
Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063-2101.
Atkinson, R., Arey, J., 2003. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 103, 4605-4638.
Atkinson, R., Arey, J., 2006. Identification and atmospheric reactions of polar products of selected aromatic hydrocarbons.
Beevers, S.D., Westmoreland, E., de Jong, M.C., Williams, M.L., Carslaw, D.C., 2012. Trends in NOx and NO2 emissions from road traffic in Great Britain. Atmos. Environ. 54, 107-116.
Borbon, A., Gilman, J.B., Kuster, W.C., Grand, N., Chevaillier, S., Colomb, A., Dolgorouky, C., Gros, V., Lopez, M., Sarda-Esteve, R., Holloway, J., Stutz, J., Petetin, H., McKeen, S., Beekmann, M., Warneke, C., Parrish, D.D., de Gouw, J.A., 2013. Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris. J. Geophys. Res., [Atmos.] 118, 2041-2057.
Bowman, F.M., Seinfeld, J.H., 1994. Ozone productivity of atmospheric organics. J. Geophys. Res., [Atmos.] 99, 5309-5324.
Bruhl, R.J., Linder, S.H., Sexton, K., 2013. Case Study of Municipal Air Pollution Policies: Houston’s Air Toxic Control Strategy under the White Administration, 2004–2009. Environ. Sci. Technol 47, 4022-4028.
Bruner, F., Crescentini, G., Mangani, F., Lattanzi, L., 1990. Capillary gas chromatography with graphitized carbon black. J. Chromatogr., A 517, 123-129.
Cao, X.-L., Hewitt, C.N., 1993. Thermal desorption efficiencies for different adsorbate/adsorbent systems typically used in air monitoring programmes. Chemosphere 27, 695-705.
Carter, W.P.L., 1991. Development of ozone reactivity scales for volatile organic compounds. Univ. California, p. 130 pp.
Carter, W.P.L., 2010. Updated Maximum Incremental Reactivity Scale and Hydrocarbon Bin. Reactivities for Regulatory Applications.
Carter, W.P.L., Atkinson, R., 1989. Computer modeling study of incremental hydrocarbon reactivity. Environ. Sci. Technol 23, 864-880.
Cetin, E., Odabasi, M., Seyfioglu, R., 2003. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Sci. Total Environ. 312, 103-112.
Chameides, W.L., Fehsenfeld, F., Rodgers, M.O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D.R., Rasmussen, R.A., Zimmerman, P., Greenberg, J., Mlddleton, P., Wang, T., 1992. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res., [Atmos.] 97, 6037-6055.
Chang, C.-C., OuYang, C.-F., Wang, C.-H., Chiang, S.-W., Wang, J.-L., 2010. Validation of in-situ measurements of volatile organic compounds through flask sampling and gas chromatography/mass spectrometry analysis. Atmos. Environ. 44, 1301-1307.
Chang, C.-C., Wang, J.-L., Candice Lung, S.-C., Liu, S.-C., Shiu, C.-J., 2009. Source characterization of ozone precursors by complementary approaches of vehicular indicator and principal component analysis. Atmos. Environ. 43, 1771-1778.
Chen, S.-P., Liu, T.-H., Chen, T.-F., Yang, C.-F.O., Wang, J.-L., Chang, J.S., 2010. Diagnostic Modeling of PAMS VOC Observation. Environ. Sci. Technol 44, 4635-4644.
Clark, L.P., Millet, D.B., Marshall, J.D., 2011. Air Quality and Urban Form in U.S. Urban Areas: Evidence from Regulatory Monitors. Environ. Sci. Technol 45, 7028-7035.
Clementschitsch, F.B., Karl, 2006. Improvement of bioprocess monitoring: development of novel concepts. Microbial Cell Factories 5, 19.
Cody, R.P., Weisel, C.P., Birnbaum, G., Lioy, P.J., 1992. The effect of ozone associated with summertime photochemical smog on the frequency of asthma visits to hospital emergency departments. Environ. Res. 58, 184-194.
Committee on Tropospheric Ozone, N.R.C., 1991. Rethinking the Ozone Problem in Urban and Regional Air Pollution. The National Academies Press.
Cunnold, D., Alyea, F., Prinn, R., 1978. A methodology for determining the atmospheric lifetime of fluorocarbons. Journal of Geophysical Research: Oceans 83, 5493-5500.
de Gouw, J.A., Goldan, P.D., Warneke, C., Kuster, W.C., Roberts, J.M., Marchewka, M., Bertman, S.B., Pszenny, A.A.P., Keene, W.C., 2003. Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J. Geophys. Res., [Atmos.] 108, 4682.
Deans, D.R., 1965. An improved technique for back-flushing gas chromatographic columns. J. Chromatogr., A 18, 477-481.
Deans, D.R., 1968. A new technique for heart cutting in gas chromatography [1]. Chromatographia 1, 18-22.
Deans, D.R., 1981. Use of heart cutting in gas chromatography: A review. J. Chromatogr., A 203, 19-28.
Dewulf, J., Van Langenhove, H., 1999. Anthropogenic volatile organic compounds in ambient air and natural waters: a review on recent developments of analytical methodology, performance and interpretation of field measurements. J. Chromatogr., A 843, 163-177.
Geneva, 1995. Schizophrenia and public health, in: Abuse, D.o.M.H.a.P.o.S. (Ed.).
Grewe, V., Dahlmann, K., Matthes, S., Steinbrecht, W., 2012. Attributing ozone to NOx emissions: Implications for climate mitigation measures. Atmos. Environ. 59, 102-107.
Gunnar, T., Engblom, C., Ariniemi, K., 2007. Pressure-adjusted continual flow heart-cutting for the high throughput determination of amphetamine-type stimulant drugs in whole blood by fast multidimensional gas chromatography–mass spectrometry. J. Chromatogr., A 1166, 171-180.
Helmig, D., 1999. Air analysis by gas chromatography. J. Chromatogr., A 843, 129-146.
Kim, K.-H., Shon, Z.-H., Kim, M.-Y., Sunwoo, Y., Jeon, E.-C., Hong, J.H., 2008. Major aromatic VOC in the ambient air in the proximity of an urban landfill facility. Journal of Hazardous Materials 150, 754-764.
Koren, H.S., Devlin, R.B., Graham, D.E., Mann, R., McGee, M.P., Horstman, D.H., Kozumbo, W.J., Becker, S., House, D.E., et, a., 1989. Ozone-induced inflammation in the lower airways of human subjects. Am. Rev. Respir. Dis. 139, 407-415.
Kornacki, W., Fastyn, P., Gierczak, T., Gawłowski, J., Niedzielski, J., 2006. Reactivity of Carbon Adsorbents Used to Determine Volatile Organic Compounds in Atmospheric Air. Chromatographia 63, 67-71.
Król, S., Zabiegała, B., Namieśnik, J., 2010. Monitoring VOCs in atmospheric air II. Sample collection and preparation. TrAC Trends in Analytical Chemistry 29, 1101-1112.
Lin, T.-Y., Sree, U., Tseng, S.-H., Chiu, K.H., Wu, C.-H., Lo, J.-G., 2004. Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmos. Environ. 38, 4111-4122.
Louie, P.K.K., Ho, J.W.K., Tsang, R.C.W., Blake, D.R., Lau, A.K.H., Yu, J.Z., Yuan, Z., Wang, X., Shao, M., Zhong, L., VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmos. Environ.
Lu, C.-J., Zellers, E.T., 2001. A Dual-Adsorbent Preconcentrator for a Portable Indoor-VOC Microsensor System. Analytical Chemistry 73, 3449-3457.
Middleton, J.T., Kendrick, J.B.J., Schwalm, H.W., 1950. Injury to herbaceous plants by smog or air pollution. Journal Name: Plant Dis.; (United States); Journal Volume: 34:9, Medium: X; Size: Pages: 245-252.
Monod, A., Sive, B.C., Avino, P., Chen, T., Blake, D.R., Sherwood Rowland, F., 2001. Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 35, 135-149.
Muezzinoglu, A., Odabasi, M., Onat, L., 2001. Volatile organic compounds in the air of Izmir, Turkey. Atmos. Environ. 35, 753-760.
Na, K., Kim, Y.P., Moon, K.C., Moon, I., Fung, K., 2001. Concentrations of volatile organic compounds in an industrial area of Korea. Atmos. Environ. 35, 2747-2756.
Na, K., Pyo Kim, Y., 2007. Chemical mass balance receptor model applied to ambient C2–C9 VOC concentration in Seoul, Korea: Effect of chemical reaction losses. Atmos. Environ. 41, 6715-6728.
O’Hara, D., Singh, H.B., 1988. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector. Atmospheric Environment (1967) 22, 2613-2615.
Parrish, D.D., Stohl, A., Forster, C., Atlas, E.L., Blake, D.R., Goldan, P.D., Kuster, W.C., de Gouw, J.A., 2007. Effects of mixing on evolution of hydrocarbon ratios in the troposphere. J. Geophys. Res., [Atmos.] 112, D10S34.
Placet, M., Mann, C.O., Gilbert, R.O., Niefer, M.J., 2000. Emissions of ozone precursors from stationary sources:: a critical review. Atmos. Environ. 34, 2183-2204.
Pollmann, J., Helmig, D., Hueber, J., Tanner, D., Tans, P.P., 2006. Evaluation of solid adsorbent materials for cryogen-free trapping—gas chromatographic analysis of atmospheric C2–C6 non-methane hydrocarbons. J. Chromatogr., A 1134, 1-15.
Rappenglück, B., Apel, E., Bauerfeind, M., Bottenheim, J., Brickell, P., Čavolka, P., Cech, J., Gatti, L., Hakola, H., Honzak, J., Junek, R., Martin, D., Noone, C., Plass-Dülmer, C., Travers, D., Wang, D., 2006. The first VOC intercomparison exercise within the Global Atmosphere Watch (GAW). Atmos. Environ. 40, 7508-7527.
Sanchez, J.M., Sacks, R.D., 2003. On-Line Multibed Sorption Trap and Injector for the GC Analysis of Organic Vapors in Large-Volume Air Samples. Analytical Chemistry 75, 978-985.
Sawyer, R.F., Harley, R.A., Cadle, S.H., Norbeck, J.M., Slott, R., Bravo, H.A., 2000. Mobile sources critical review: 1998 NARSTO assessment. Atmos. Environ. 34, 2161-2181.
Shepson, P.B., Kleindienst, T.E., McElhoe, H.B., 1987. A cryogenic trap/porous polymer sampling technique for the quantitative determination of ambient volatile organic compound concentrations. Atmospheric Environment (1967) 21, 579-587.
Slemr, J., 1991. Determination of volatile carbonyl compounds in clean air. Fresenius’ Journal of Analytical Chemistry 340, 672-677.
Staehelin, J., Schläpfer, K., Bürgin, T., Steinemann, U., Schneider, S., Brunner, D., Bäumle, M., Meier, M., Zahner, C., Keiser, S., Stahel, W., Keller, C., 1995. Emission factors from road traffic from a tunnel study (Gubrist tunnel, Switzerland). Part I: concept and first results. Science of The Total Environment 169, 141-147.
Tanimoto, H., Mukai, H., Sawa, Y., Matsueda, H., Yonemura, S., Wang, T., Poon, S., Wong, A., Lee, G., Jung, J.Y., Kim, K.R., Lee, M.H., Lin, N.H., Wang, J.L., Ou-Yang, C.F., Wu, C.F., Akimoto, H., Pochanart, P., Tsuboi, K., Doi, H., Zellweger, C., Klausen, J., 2007. Direct assessment of international consistency of standards for ground-level ozone: strategy and implementation toward metrological traceability network in Asia. Journal of Environmental Monitoring 9, 1183-1193.
Tranchida, P.Q., Sciarrone, D., Dugo, P., Mondello, L., 2012. Heart-cutting multidimensional gas chromatography: A review of recent evolution, applications, and future prospects. Anal. Chim. Acta 716, 66-75.
Vairavamurthy, A., Roberts, J.M., Newman, L., 1992. Methods for determination of low molecular weight carbonyl compounds in the atmosphere: A review. Atmospheric Environment. Part A. General Topics 26, 1965-1993.
Van Grinsven, H.J.M., Holland, M., Jacobsen, B.H., Klimont, Z., Sutton, M.a., Jaap Willems, W., 2013. Costs and Benefits of Nitrogen for Europe and Implications for Mitigation. Environ. Sci. Technol 47, 3571-3579.
Volden, J., Thomassen, Y., Greibrokk, T., Thorud, S., Molander, P., 2005. Stability of workroom air volatile organic compounds on solid adsorbents for thermal desorption gas chromatography. Anal. Chim. Acta 530, 263-271.
Wang, C.-H., Chang, C.-C., Wang, J.-L., 2005. Peak tailoring concept in gas chromatographic analysis of volatile organic pollutants in the atmosphere. J. Chromatogr., A 1087, 150-157.
Wang, C.-H., Chiang, S.-W., Wang, J.-L., 2010. Simultaneous analysis of atmospheric halocarbons and non-methane hydrocarbons using two-dimensional gas chromatography. J. Chromatogr., A 1217, 353-358.
Wang, J.-L., Chang, C.-J., Chang, W.-D., Chew, C., Chen, S.-W., 1999a. Construction and evaluation of automated gas chromatography for the measurement of anthropogenic halocarbons in the atmosphere. J. Chromatogr., A 844, 259-269.
Wang, J.-L., Chen, S.-W., Chew, C., 1999b. Automated gas chromatography with cryogenic/sorbent trap for the measurement of volatile organic compounds in the atmosphere. J. Chromatogr., A 863, 183-193.
William Carter , W.P.L.C., 1994. Development Of Ozone Reactivity Scales For Volatile Organic Compounds (1994).
Yurdakul, S., Civan, M., Tuncel, G., 2013. Volatile organic compounds in suburban Ankara atmosphere, Turkey: Sources and variability. Atmospheric Research 120–121, 298-311.
Zaveri, R.A., Voss, P.B., Berkowitz, C.M., Fortner, E., Zheng, J., Zhang, R., Valente, R.J., Tanner, R.L., Holcomb, D., Hartley, T.P., Baran, L., 2010. Overnight atmospheric transport and chemical processing of photochemically aged Houston urban and petrochemical industrial plume. J. Geophys. Res., [Atmos.] 115, D23303.
Zhang, Y.H., Su, H., Zhong, L.J., Cheng, Y.F., Zeng, L.M., Wang, X.S., Xiang, Y.R., Wang, J.L., Gao, D.F., Shao, M., Fan, S.J., Liu, S.C., 2008. Regional ozone pollution and observation-based approach for analyzing ozone–precursor relationship during the PRIDE-PRD2004 campaign. Atmos. Environ. 42, 6203-6218.
行政院環保署99年空氣污染防製總檢討報告
行政院環保署光化測站監測網
行政院環保署空氣品質監測網
行政院環保署空氣品質監測方法(A705.11C 、A00210C)
王介亨, 以Heart-cut 技術配合單偵檢器發展氣相層析. “剪裁(tailoring)”技術 (2004)
歐雅雯, 以 VOCs 測站網探討中臺灣臭氧成因 (2005)
顏敬秦, 以滲透管法製備OVOC標準氣體並應用於線上檢量(2011)
陳彥呈, 以NCLA9K4活性碳作為VOCs濃縮介質與熱脫附方法之改良 (2011)
蘇源昌, 自動氣相層析質譜儀於揮發性有機物之分析技術與應用(2011)
99年度環保署/國科會空汙防制科研合作計畫-加強本土化汙染源發揮性有機空氣汙染物與異味物質排放資料建立研究
行政院環境保護署環境檢驗所-空氣汙染移動實驗室監測技術之研究開發
國內全國性排放清冊(Taiwan emission data system, TEDS7.1)
空氣汙染移動實驗室監測技術之研究開發(EPA-100-E3S2-02-01)
指導教授 王家麟(Jia-Lin Wang) 審核日期 2013-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明