![]() |
|
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:38 、訪客IP:18.218.121.122
姓名 陳衍錫(Yan-shi Chen) 查詢紙本館藏 畢業系所 生物物理研究所 論文名稱
(The effect of sterol on the POPE/DPPC membranes)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 ( 永不開放)
摘要(中) 研究指出哺乳類的細胞膜上存在著擁有不同物理與化學特性的區塊(domain),這些區塊被稱為脂質筏(raft),脂質筏中含有高濃度的膽固醇。然而在酵母菌的細胞膜同樣發現脂質筏的存在,其中含有大量的麥角甾醇。而麥角甾醇在脂質筏上的作用,和膽固醇相似。為了更加了解脂質筏的行為,我們需要對脂質膜的相行為做研究。本文利用螢光顯微術和核磁共振(2H-NMR)來研究DPPC和POPE兩種脂質組成的人造膜,以及DPPC、POPE和麥角甾醇(ergosterol)所組成的人造膜的物理性質。螢光顯微術藉由螢光分子(NBD-DOPE)標示,便可觀察到螢光影像,以探討人造膜表面形態。核磁共振則藉由將氘取代DPPC 或 POPE sn-1上的氫,得以量測DPPC和POPE的相行為。結果顯示70:30 POPE/DPPC在15 度下,為兩種so相共存,其一為POPE-rich so 相,另一為DPPC-rich so 相,隨著飽和脂質DPPC的比例增加至50 mol%,POPE-rich so相消失,只剩下DPPC-rich so相。比較含有麥角甾醇以及未含有麥角甾醇的人造膜的結果。在70:30 DPPC/POPE,以及50:50 DPPC/POPE的人造細胞膜中加入固醇會產生lo相。最後我們總結不同比例的人造膜,並得到局部的相圖。 摘要(英) The specialized membrane microdomain was found in the mammalian cells membrane which termed lipid rafts with different physical and chemical properties. The lipid rafts contain 3 to 5-fold the amount of cholesterol found in the surrounding bilayer. Like cholesterol in mammalian cell membrane, ergosterol is important to the raft in the yeast cell membrane. To gain a better understanding of the effect of sterols on biological membrane properties requires investigations of the phase behavior. We study the physical properties of model membranes for binary mixture containing DPPC and POPE, and ternary mixtures containing DPPC, POPE and ergosterol using fluorescence microscopy and deuterium nuclear magnetic resonance (2H-NMR). The morphology of model membranes was observed as a function of temperature and composition by fluorescence microscopy. DPPC or POPE was deuterium labeled alternatively such that the phase behavior of both DPPC and POPE can be observed by 2H-NMR. 70:30 POPE/DPPC are in coexistence of 2 types of so phases at 15 ℃. As the DPPC concentration increases to 50 mol%, the POPE-rich so phase disappears and lipid bilayer only showed DPPC-rich so phase. The results of ternary mixtures containing sterol are compared with those of binary mixture to investigate the effect of sterol. In the 70:30 DPPC/POPE and 50:50 DPPC/POPE, ergosterol induces the formation of a lo phase in the so-phase bilayers. Finally, we present a partial phase diagram to summarize our findings. 關鍵字(中) ★ 細胞膜
★ 脂質筏
★ 麥角甾醇關鍵字(英) ★ membrane
★ lipid rafts
★ ergosterol論文目次 提要 ………………………………………………………………… I
Abstract ………………………………………………………………… II
Acknowledgements ………………………………………………………………… III
Contents ………………………………………………………………… IV
List of Figures ………………………………………………………………… VI
List of Tables ………………………………………………………………… VIII
Chapter 1 Introduction…………………………………………………… 1
1.1. Plasma Membrane Outline……………………………………. 1
1.2. Lipid Rafts……………………………………………………. 1
1.3. Phase Behavior………………………………………………... 3
1.4. DPPC and POPE……………………………………………… 4
Chapter 2 Materials and Methods……………………………………….. 7
2.1. Materials………………………………………………………. 7
2.2. Sample Preparation…………………………………………… 7
2.3. Fluorescence Microscopy…………………………………….. 10
2.3.1. Fluorescence Microscopy of operation……………………….. 10
2.3.2. Fluorescence Probe……………………………………………. 11
2.3.3. The Principle of Fluorescence………………………………… 12
2.4. Nuclear Magnetic Resonance (NMR) ……………………….. 13
2.4.1. The Principle of NMR………………………………………… 13
2.4.2. Quadrupolar Interaction……………………………………….. 15
Chapter 3 Results and Discussion………………………………………... 17
3.1. Fluorescence Image Data……………………………………… 17
3.1.1. The Effects of Different Proportions on GUVs (POPE/DPPC) 17
3.1.2. The Effects of Ergosterol on GUVs of (POPE/DPPC) ………. 19
3.2. Fluorescence Image Data and 2H-NMR Spectrum Data……… 21
3.2.1. (70:30 POPE/DPPC), (70:30 POPE/DPPC) + 33 mol% erg….. 21
3.2.2. (50:50 POPE/DPPC), (50:50 POPE/DPPC) + 33 mol% erg….. 27
3.2.3. Comparison of Fluorescence and 2H-NMR data……………… 31
3.3. Phase Diagram………………………………………………… 33
Chapter 4 Conclusions…………………………………………………… 36
References ………………………………………………………………… 39參考文獻 [1] M. Luckey, Membrane structural biology: with biochemical and biophysical foundations, Cambridge University Press, 2008.
[2] W.H. Binder, V. Barragan, F.M. Menger, Domains and rafts in lipid membranes, Angewandte Chemie International Edition 42 (2003) 5802-5827.
[3] L.J. Pike, The challenge of lipid rafts, Journal of lipid research 50 (2009) S323-S328.
[4] S. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell membranes, Landmark Papers in Cell Biology (1972) 296-307.
[5] Z. Korade, A.K. Kenworthy, Lipid rafts, cholesterol, and the brain, Neuropharmacology 55 (2008) 1265-1273.
[6] M. Edidin, The state of lipid rafts: from model membranes to cells, Annual review of biophysics and biomolecular structure 32 (2003) 257-283.
[7] D.A. Brown, E. London, Structure and function of sphingolipid-and cholesterol-rich membrane rafts, Journal of Biological Chemistry 275 (2000) 17221-17224.
[8] R.B. Gennis, Biomembranes: molecular structure and function, Springer-Verlag New York, 1989.
[9] J. Rubenstein, B.A. Smith, H.M. McConnell, Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines, Proceedings of the National Academy of Sciences 76 (1979) 15-18.
[10] Y.W. Hsueh, K. Gilbert, C. Trandum, M. Zuckermann, J. Thewalt, The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study, Biophysical Journal 88 (2005) 1799-1808.
[11] K. Simons, E. Ikonen, Functional rafts in cell membranes, Nature 387 (1997) 569.
[12] M.E. Beattie, S.L. Veatch, B.L. Stottrup, S.L. Keller, Sterol structure determines miscibility versus melting transitions in lipid vesicles, Biophysical Journal 89 (2005) 1760-1768.
[13] A. Filippov, G. Orädd, G. Lindblom, Lipid lateral diffusion in ordered and disordered phases in raft mixtures, Biophysical Journal 86 (2004) 891.
[14] K. Kanno, M.K. Wu, D.S. Agate, B.J. Fanelli, N. Wagle, E.F. Scapa, C. Ukomadu, D.E. Cohen, Interacting proteins dictate function of the minimal START domain phosphatidylcholine transfer protein/StarD2, Journal of Biological Chemistry 282 (2007) 30728-30736.
[15] C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes 2d Ed, J. Wiley., 1980.
[16] K. Emoto, T. Kobayashi, A. Yamaji, H. Aizawa, I. Yahara, K. Inoue, M. Umeda, Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis, Proceedings of the National Academy of Sciences 93 (1996) 12867-12872.
[17] M.I. Angelova, D.S. Dimitrov, Liposome electroformation, Faraday Discuss. Chem. Soc. 81 (1986) 303-311.
[18] http://www.avantilipids.com/.
[19] R.F.M. de Almeida, L. Loura, M. Prieto, Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging, Chemistry and physics of lipids 157 (2009) 61-77.
[20] L. Loura, R.F.M. De Almeida, L.C. Silva, M. Prieto, FRET analysis of domain formation and properties in complex membrane systems, Biochimica et Biophysica Acta (BBA)-Biomembranes 1788 (2009) 209-224.
[21] C.P. Slichter, principles of magnetic resonance (3rd edn), (1990).
[22] J.H. Davis, the description of membrane lipid conformation, order and dynamics by 2H-NMR, BIOCHIMICA ET Biophysica Acta 737 (1983) 171.
[23] S. Veatch, I. Polozov, K. Gawrisch, S. Keller, Liquid domains in vesicles investigated by NMR and fluorescence microscopy, Biophysical Journal 86 (2004) 2910-2922.指導教授 薛雅薇(Ya-wei Hsueh) 審核日期 2013-7-1 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare