參考文獻 |
[1]A. Krost, and A. Dadgar, “GaN-Based Devices on Si”, phys. Stat. sol. (a), vol 194, pp.361 ,
2002
[2]H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. K. Mishra, J. S. Speck, S. P. DenBaars, and J. A. Freitas, “Metalorganic chemical vapor deposition of GaN on Si(111): Stress control and application to field-effect transistors”, J. Appl. Phys., vol 89, 7846, 2001.
[3]H. Ishigawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, ” High-Quality GaN on Si Substrate Using AlGaN/AlN Intermediate Layer”, phys. stat. sol. (a), vol 176, pp.599, 1999
[4]H. Ishigawa, G.-Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, “GaN on Si Substrate with AlGaN/AlN Intermediate Layer”, Jpn. J. Appl. Phys., vol 38, pp.L492, 1999
[5]M. H. Kim, Y-G. Do, H. C. Kang, D. Y. Noh, and S.-J. Park, ”Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition”, Appl. Phys. Lett., vol 79, pp.2713, 2001
[6]E. Feltin, B. Beaumont, M. Lau¨ gt, P. de Mierry, P. Venne´gue`s, M. Leroux, and P. Gibart, “Crack-Free Thick GaN Layers on Silicon (111) by Metalorganic Vapor Phase Epitaxy”, phys. stat. sol (a), vol 188, pp.531, 2001
[7]E. Feltin, S. Dalmasso, P. de Mierry, B. Beaumont, H. Lahre`che, A. Bouille´, H. Haas, M. Leroux, and P. Gibart, “Green InGaN Light-Emitting Diodes Grown on Silicon (111) by Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys., vol 40, pp.L738, 2001
[8]E. Feltin, B. Beaumont, M. Lau¨ gt, P. de Mierry, P. Venne´gue`s, H. Lahre`che, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy”, Appl. Phys. Lett., vol 79, pp.3230, 2001
[9]H. P. D. Schenk, E. Feltin, M. Vaille, P. Gibart, R. Kunze, H. Schmidt, M. Weihnacht, and E. Doghe`che, “Acoustical and Optical Gallium Nitride Waveguides Grown on Si(111) by Metalorganic Vapor Phase Epitaxy”, phys. stat. sol. (a), vol 188, pp.537, 2001
[10]M. Iwaya, S. Terao, N. Hayashi, T. Kashima, H. Amano, and I. Akasaki, “Realization of crack-free and high-quality thick AlxGa1−xN for UV optoelectronics using low-temperature interlayer”, Appl. Surf. Sci., vol 159–160, pp.405, 2000
[11]A. Reiher, J. Bläsing, A. Dadgar, A. Diez, A. Krost, “Efficient stress relief in GaN heteroepitaxy on Si(111) using low-temperature AlN interlayers”, J. Cryst. Growth, vol 248, pp.563, 2003
[12]P. R. Hageman, S. Haffouz, V. Kirilyuk, A. Grzegorczyk, and P. K. Larsen, “High Quality GaN Layers on Si(111) Substrates: AlN Buffer Layer Optimisation and Insertion of a SiN Intermediate Layer”,phys. stat. sol. (a), vol 188, pp.523, 2001
[13]A. Dadgar, M. Poschenrieder, O. Contreras, J. Christen, K. Fehse, J. Bla¨ sing, A. Diez, F. Schulze, T. Riemann, F. A. Ponce, and A. Krost, “Bright, Crack-Free InGaN/GaN Light Emitters on Si(111)”,phys. stat. sol. (a), vol 192, pp.308, 2002
[14]T. Wang, Y. Morishima, N. Naoi, and S. Sakai, “A new method for a great reduction of dislocation density in a GaN layer grown on a sapphire substrate”, J. Cryst. Growth, vol 213, pp.188 2000
[15]S. Zamir, B. Meyler, and J. Salzman, “Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy”, Appl. Phys. Lett., vol 78, pp.288, 2001
[16]S. Zamir, B. Meyler, and J. Salzman, “Lateral confined epitaxy of GaN layers on Si substrates”,J. Cryst. Growth, vol 230, pp.341, 2001
[17]S. Zamir, B. Meyler, J. Salzman, F. Wu, and Y. Golan, “Enhanced photoluminescence from GaN grown by lateral confined epitaxy”, J. Appl. Phys. Lett., Vol 91, pp.1191, 2001
[18]Y. Honda, Y. Kuroiwa, M. Kawaguchi, and N. Sawaki, “Growth of GaN free from cracks on a (111)Si substrate by selective metalorganic vapor-phase epitaxy”, Appl. Phys. Lett., vol 80, pp.222 2002
[19]A. Dadgar, A. Alam, T. Riemann, J. Bla¨ sing, A. Diez, M. Poschenrieder, M. Strassburg, M. Heuken, J. Christen, and A. Krost, “Crack-Free InGaN/GaN Light Emitters on Si(111)”, phys. stat. sol. (a), vol 188, pp.155, 2001
[20]A. Dadgar, J. Christen, T. Riemann, S. Richter, J. Bla¨ sing, A. Diez, A. Krost, A. Alam, and M. Heuken, “Bright blue electroluminescence from an InGaN/GaN multiquantum-well diode on Si(111): Impact of an AlGaN/GaN multilayer”, Appl. Phys. Lett., Vol 78, pp.2211, 2001
[21]A. Dadgar, C. Humsa,A. Dieza, F. Schulzea, J. Bläsinga, and A. Krost, “Epitaxy of GaN on large substrate: Si or sapphire?”, Proc. of SPIE, vol 6355, pp.63550R-1
[22]http://www.bridgelux.com
[23]Ayers, John E,” Heteroepitaxy of semiconductors”, p161
[24]Ayers, John E,” Heteroepitaxy of semiconductors”, p164
[25]S. Luryi, and E. Suhir, Appl. Phys. Lett. 49 140 (1986)
[26]E. Suhir, J. Appl. Mech. 53 657 (1986)
[27]D. Zubia, and S. D. Hersee, “Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials”, J. Appl. Lett., vol 85, pp.6492, 1999
[28]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Y. Angew, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays”, Chem. Int. Ed., vol 42, pp.3031, 2003
[29]J.W. Lee, S.W. Park, and J.B. Yoo, “The Application of a Low Temperature GaN Buffer Layer to Thick GaN Film Growth on ZnO/Si Substrate”, Phys. Stat. sol. (a), vol 176, pp.583, 1999
[30]Ayers, John E, “Heteroepitaxy of semiconductors”, p392
[31]D. Zubia, S. H. Zaidi, S. D. Hersee, and S. R. J. Brueck, “Nanoheteroepitaxy: Nanofabrication route to improved epitaxial growth”, J. Vacc. Sci. Technol. B, vol 18, pp.3514, 2000
[32]H. Wang, Z. P. Zhang, X. N. Wang, Q. Mo, Y. Wang, J. H. Zhu, H. B. Wang, F. J. Yang, Y. Jiang, “Selective Growth of Vertical-aligned ZnO Nanorod Arrays on Si Substrate by Catalyst-free Thermal Evaporation”, Nanoscale Res. Lett., vol 3, pp.309, 2008
[33]M. Guo, P. Diao and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions”, J. Solid Stat. Chem., vol 178, pp.1864-1873, 2005
[34]T. Ma, M. Guo, M. Zhang, and Z. wang, “The Effect of the Texture and the Density of ZnO Seed Layer on the Orientation of ZnO Nanorod Arrays”, J. Nanosci. Nanotechnol., vol 9, pp.5920-5926, 2009
[35]Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings”, Energy Environ. Sci., vol 4, pp.3436-3441, 2011
[36]K. S. Ranjith, R. Pandian, G. Natarrajan, M. Kamruddin, R. T. Rajendrakumar, “Optimisation on the Growth and Alignment of ZnO Nanorods”, Adv. Mater. Res., vol 584, pp.319-323, 2012
[37]J. Song, S. Baek, J. Lee, and S. Lim, “Role of OH− in the low temperature hydrothermal synthesis of ZnO nanorods”, J. Chem. Technol. Biotechnol., vol 83, pp.345-350, 2008
[38]J. Liu, J. She, S. Deng, J. Chen, and N. Xu, “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics”, J. Phys. Chem. C, vol 112, pp.11685-11690, 2008
[39]L. W. Ji, S. M. Peng, J. S. Wu, W. S. Shih, C. Z. Wu, I. T. Tang, “Effect of seed layer on the growth of well-aligned ZnO nanowires”, J. Phys. and Chem. Sol., vol 70, pp.1359-1362, 2009
[40]A. R. Kim, J. Y. Lee, B. R. Jang, H. S. Kim, H. K. Park, Y. J. Cho, and N. W. Jang, “Effect of Post Annealing of ZnO Buffer Layer on the Properties of Hydrothermally Grown ZnO Nanorods”, Jpn. J. Appl. Phys., vol 49, pp.06GH10, 2010
[41]Y. Shi, Z. Yang, H. Cao, and Z. Liu, “Controlled c-oriented ZnO nanorod arrays and m-plane ZnO thin film growth on Si substrate by a hydrothermal method”, J. Cryst. Growth, vol 312, pp.568-572, 2010
[42]H. Ghayour, H. R. Rezaie, S. Mirdamadi, A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods”, Vaccum, vol 86, pp.101-105 2011
[43]G. J. Lee, S. Ki. Min, C. H. Oh, Y. P. Lee, H. Cheong, H. J. Nam, C. K. Hwangbo, S. K. Min, and S. H. Han, “Effects of Seed Layers on Structural, Morphological, and Optical Properties of ZnO Nanorods”, J. Nanosci. Nanotechnol., vol 11, pp.511-517, 2011
[44]D. S. Kang, H. S. Lee, S. K. Han, V. Srivastava, E. S. Babu, S. K. Hang, M. J. Kim, J. H. Song, H. Kim, and D. Kim, “Growth and optical properties of ZnO nanorods prepared through hydrothermal growth followed by chemical vapor deposition”, J. Alloys and Compounds, vol 509, pp.5137-5141, 2011
[45]F. Solis-Pomar, E. Martinez, M. F Melendrez, and E. Perez-Tijerina, “Growth of vertically aligned ZnO nanorods using textured ZnO films”, Nano. Res. Lett., vol 6, pp.524, 2011
[46]N. Li, “GaN on ZnO: A NEW APPROACH TO SOLID STATE LIGHTING”, Georgia Institute of Technology, 2009
[47]C. C. Lin, H. C. Liao, and S. Y. Chena, “Luminescent and structural characteristics of ZnO nanorods fabricated by postannealing”, J. Vac. Sci. Technol. B, vol 24, pp.304, 2006
[48]N. Li, E. H. Park, Y. Huang, S. Wang, A. Valencia, B. Nemeth, J. Nause, and I. Ferguson, “Growth of GaN on ZnO for Solid State Lighting Applications”, Proc. of SPIE, vol 6337, pp.63370Z-1, 2006
[49]H. Yoo, K. Chung, Y. S. Choi, C. S. Kang, K. H. Oh, M. Kim, and G. C. Yi, “Microstructures of GaN Thin Films Grown on Graphene Layers”, Adv. Mater., vol 24, pp.515-518, 2012
[50]H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., vol 48, pp.353, 1986
[51]S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., vol 30, pp.L1705, 1991
[52]S. D. Hersee, J. Ramer, K. Zheng, C. Kranenberg, K. Malloy,M. Banas, M. Goorsky, “Effects of H2/NH3 Flow-Rate Ratio on the Luminescent, Structural, and Electrical Propertiesof GaN Epitaxial Layers Grown by MOCVD”, J. Electron. Mater, vol 24, pp.1519, 1995
[53]H. Yu, S. Wang, N. Li, W. Fenwick, A. Melton, Matthew H. Kane, B. Klein, and l. Ferguson, “MOVPE growth of AlGaN/GaN superlattices on ZnO substrates for green emitter applications”,Proc. of SPIE, vol 7058, pp.70580V-1, 2008
[54]T. Suzuki, C.Harada, H. Goto, T. Minegishi, A. Setiawan, H. J. Ko, M. W. Cho, and T. Yao, “Relation between interdiffusion and polarity for MBE growth of GaN epilayers on ZnO substrates”, Current Appl. Phys., vol 4, pp.643-646, 2004
[55]R. M. Lin, S. F. Yu, M. J. Chen, and W. C. Hsu, “Original GaN-based LED structure on ZnO template by MOCVD”, Proc. of SPIE, vol 7602, pp.7602L-1, 2013 |