參考文獻 |
1. Ahel, M., W. Giger, and C. Schaffner, Behavior of Alkylphenol Polyethoxylate Surfactants in the Aquatic Environment .2. Occurrence and Transformation in Rivers. Water Res, 1994. 28(5): p. 1143-1152.
2. Ahel., M. and W. Giger, Aqueous solubility of alkylphenols and alkylphenol polyethoxy- lates. Chemosphere, 1993a. 26: p. 1461–1470.
3. Tabira, Y., et al., Structural requirements of para-alkylphenols to bind to estrogen receptor. Eur J Biochem, 1999. 262(1): p. 240-5.
4. Vazquez, G.R., et al., Exposure to waterborne 4-tert-octylphenol induces vitellogenin synthesis and disrupts testis morphology in the South American freshwater fish Cichlasoma dimerus (Teleostei, Perciformes). Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2009. 150(2): p. 298-306.
5. Jobling, S., et al., Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environmental Toxicology and Chemistry, 1996. 15(2): p. 194-202.
6. Jobling, S. and J.P. Sumpter, Detergent Components in Sewage Effluent Are Weakly Estrogenic to Fish - an in-Vitro Study Using Rainbow-Trout (Oncorhynchus-Mykiss) Hepatocytes. Aquatic Toxicology, 1993. 27(3-4): p. 361-372.
7. Sumpter, J.P. and S. Jobling, Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect., 1995. 103: p. 173–178.
8. Montgomery-Brown, J. and M. Reinhard, Occurrence and behavior of alkylphenol polyethoxylates in the environment. Environmental Engineering Science, 2003. 20(5): p. 471-486.
9. Ahel., M. and W. Giger, Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere, 1993b. 26: p. 1471-1478.
10. John, D.M., W.A. House, and G.F. White, Environmental fate of nonylphenol ethoxylates: differential adsorption of homologs to components of river sediment Environ Toxicol Chem, 2000. 19: p. 293–300.
11. UKEA, UKEA (United Kingdom Environment Agency). 2005(Environmental Risk Evaluation Report: 4-tert-Octylphenol. London, UK).
12. Corporation., H., Technical Bulletin for Nonylphenol (NP), Austin, TX, USA, available from the Alkylphenols and Ethoxylates Research Council,. 1998a.
13. Staples. C. A, et al., C8- and C9-Alkylphenols and Ethoxylates: I. Identity, Physical Characterization, and Biodegradation Pathways Analysis Human and Ecological Risk, 2008. 14: p. 1007-1024.
14. White, R., et al., Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 1994. 135(1): p. 175-82.
15. Sharma, V.K., et al., Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2009. 44(5): p. 423-42.
16. Soares, A., et al., Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int, 2008. 34(7): p. 1033-49.
17. Ying, G.G., B. Williams, and R. Kookana, Environmental fate of alkylphenols and alkylphenol ethoxylates--a review. Environ Int, 2002. 28(3): p. 215-26.
18. Guenther, K., et al., Endocrine disrupting nonylphenols are ubiquitous in food. Environmental Science & Technology, 2002. 36(8): p. 1676-1680.
19. Chen, M.L., et al., Biornonitoring of alkylphenols exposure for textile and housekeeping workers. International Journal of Environmental Analytical Chemistry, 2005. 85(4-5): p. 335-347.
20. Lu, Y.Y., et al., Daily intake of 4-nonylphenol in Taiwanese. Environ Int, 2007. 33(7): p. 903-10.
21. Ferrara, F., et al., Alkylphenols in adipose tissues of Italian population. Chemosphere, 2011. 82(7): p. 1044-9.
22. Lopez-Espinosa, M.J., et al., Nonylphenol and octylphenol in adipose tissue of women in Southern Spain. Chemosphere, 2009. 76(6): p. 847-52.
23. Smeds, A. and P. Saukko, Brominated flame retardants and phenolic endocrine disrupters in Finnish human adipose tissue. Chemosphere, 2003. 53(9): p. 1123-30.
24. Tan, B.L.L. and M.A. Mohd, Analysis of selected pesticides and alkylphenols in human cord blood by gas chromatograph-mass spectrometer. Talanta, 2003. 61(3): p. 385-391.
25. Chen, M.L., et al., Quantification of prenatal exposure and maternal-fetal transfer of nonylphenol. Chemosphere, 2008. 73(1): p. S239-S245.
26. Jing, X., et al., A study on bisphenol A, nonylphenol, and octylphenol in human urine amples detected by SPE-UPLC-MS. Biomed Environ Sci, 2011. 24(1): p. 40-6.
27. Otaka, H., A. Yasuhara, and M. Morita, Determination of bisphenol A and 4-nonylphenol in human milk using alkaline digestion and cleanup by solid-phase extraction. Anal Sci, 2003. 19(12): p. 1663-6.
28. Ademollo, N., et al., Nonylphenol and octylphenol in human breast milk. Environ Int, 2008. 34(7): p. 984-7.
29. Ye, X., et al., Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2006. 831(1-2): p. 110-5.
30. Bonefeld-Jorgensen, E.C., et al., Endocrine-Disrupting Potential of Bisphenol A, Bisphenol A Dimethacrylate, 4-n-Nonylphenol, and 4-n-Octylphenol in Vitro: New Data and a Brief Review. Environ Health Perspect, 2007. 115: p. 69-76.
31. Van Miller, J.P. and C.A. Staples, Review of the potential environmental and human health-related hazards and risks from long-term exposure to p-tert-octyl phenol. Human and Ecological Risk Assessment, 2005. 11(2): p. 319-351.
32. White, G.F., Bacterial Biodegradation of Ethoxylated Surfactants. Pesticide Science, 1993. 37(2): p. 159-166.
33. Jeong, J.J., et al., 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology, 2003. 149(Pt 11): p. 3265-77.
34. Corvini, P.F., A. Schaffer, and D. Schlosser, Microbial degradation of nonylphenol and other alkylphenols--our evolving view. Appl Microbiol Biotechnol, 2006. 72(2): p. 223-43.
35. Saito, I., A. Onuki, and H. Seto, Indoor air pollution by alkylphenols in Tokyo. Indoor Air, 2004. 14(5): p. 325-32.
36. Dachs, J., D.A. Van Ry, and S.J. Eisenreich, Occurrence of estrogenic nonylphenols in the urban and coastal atmosphere of the lower Hudson River estuary. Environ Sci Technol, 1999. 33: p. 2676–2679.
37. Van Ry, D.A., et al., Atmospheric seasonal trends and environmental fate of alkylphenols in the Lower Hudson River estuary. Environ Sci Technol, 2000. 34(2410-2417).
38. Tomb, J.F., et al., The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-47.
39. Arukwe, A., et al., In vivo and in vitro metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar). Aquatic Toxicology, 2000. 49(4): p. 289-304.
40. Ding, W.H., et al., Identification of organic residues in tertiary effluents by GC/EI-MS, GC/CI-MS and GC/TSQ-MS. Fresenius Journal of Analytical Chemistry, 1996. 354(1): p. 48-55.
41. Snyder, S.A., et al., Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environ Sci Technol, 1999. 33: p. 2814–2820.
42. Rudel, R.A., et al., Identification of alkylphenols and other estrogenic phenolic compounds in wastewater, septage, and groundwater on Cape Cod, Massachusetts. Environ Sci Technol, 1998. 32: p. 861-869.
43. Isobe, T., et al., Distribution and behaviour of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ Sci Technol, 2001. 35(1041-1049).
44. Kuch, H.M. and K. Ballschmitter, Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol, 2001. 35(3201-3206).
45. Lee, H.B. and T.E. Peart, Determination of 4-nonylphenol in effluent and sludge from sewage treatment plants. Anal Chem, 1995. 67(1976-1980).
46. Cruceru, I., et al., HPLC-FLD determination of 4-nonylphenol and 4-tert-octylphenol in surface water samples. Environ Monit Assess, 2012. 184(5): p. 2783-95.
47. Yang, D.K. and W.H. Ding, Determination of alkylphenolic residues in fresh fruits and vegetables by extractive steam distillation and gas chromatography-mass spectrometry. Journal of Chromatography A, 2005. 1088(1-2): p. 200-204.
48. Liu, J., et al., Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environ Pollut, 2011. 159(10): p. 2815-22.
49. Barber, L., G. Brown, and S. Zaugg, Potential endocrine disrupting organic chemicals in treated municipal wastewater and river water. In: Keith LH, Jones-Lepp TL, and Need-ham LL (eds), Analysis of Environmental ENdocrine Disruptors, ACS Symposium Series 747, pp 97-123, American Chemical Society, Washington, DC, USA. 2000.
50. Glassmeyer, S.T., et al., Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ Sci Technol, 2005. 39(14): p. 5157-69.
51. Ding, W.H., S.H. Tzing, and J.H. Lo, Occurrence and concentrations of aromatic surfactants and their degradation products in river waters of Taiwan. Chemosphere, 1999. 38: p. 2597-2606.
52. Bennie, D.T., et al., Occurrence of alkylphenols and alkylphenol mono- and diethoxylates in natural waters of the Laurentian Great Lakes basin and the upper St. Lawrence river. Sci Total Environ, 1997. 193: p. 263-275.
53. Wu, M., et al., Seasonal and spatial distribution of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in the Huangpu River and its tributaries, Shanghai, China. Environ Monit Assess, 2013. 185(4): p. 3149-61.
54. Tsuda, T., et al., 4-Nonylphenols and 4-tert-octylphenol in water and fish from rivers flowing into Lake Biwa. Chemosphere, 2000. 41: p. 757-762.
55. Ferguson, P.L., C.R. Iden, and B.J. Brownwell, Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage-impacted urban estuary. Environ Sci Technol. Environ Sci Technol, 2001. 35: p. 2428-2435.
56. Black, D., W. Hughes, and M. Gregory, Water quality and ecological assessment of Rottenwood and Sope Creeks, Marietta, Georgia., in In: Hatcher KJ (ed), Proceedings of the 2003 Georgia Water Resources Conference2003: Institute of Ecology, University of Georgia, Athens, GA, USA.
57. Fraser, C.M., et al., The minimal gene complement of Mycoplasma genitalium. Science, 1995. 270(5235): p. 397-403.
58. C. M. Lye, et al., Estrogenic Alkylphenols in Fish Tissues, Sediments, and Waters from the U.K. Tyne and Tees Estuaries. Environ. Sci. Technol., 1999. 33 (7): p. 1009–1014.
59. McLeese, D.W., et al., Lethality and accumulation of alkylphenols in aquatic fauna. 10, pp. 723–730. Chemosphere, 1981. 10: p. 723-730.
60. Argese, E., et al., Submitochondrial particles as toxicity biosensors of chlorophenols, Environmental Toxicology and Chemistry 14 (1995), pp. 363–368. 1995.
61. CSF, Chemicals Stakeholder Forum Fifth Meeting. 4-t-noylphenol and 4-t-octylphenol. 11 September 2001.
62. Korach, K.S., Surprising places of estrogenic activity. Endocrinology, 1993. 132(6): p. 2277-8.
63. Mueller, G.C. and U.H. Kim, Displacement of estradiol from estrogen receptors by simple alkyl phenols. Endocrinology, 1978. 102(5): p. 1429-35.
64. Soto, A.M., et al., p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect, 1991. 92: p. 167-73.
65. Huang, S.L., Y.W. Lin, and N.N. Tuan, Bacterial degradation of estrogen-like nonylphenol and octylphenol: A review. Environmental Microbiology Reports (Submitted), 2013.
66. Toyama, T., et al., Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria. Environ Sci Technol, 2011. 45(15): p. 6524-30.
67. Tanghe, T., W. Dhooge, and W. Verstraete, Formation of the metabolic intermediate 2,4,4-trimethyl-2-pentanol during incubation of a Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation, 2000. 11(1): p. 11-9.
68. Tanghe, T., W. Dhooge, and W. Verstraete, Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol, 1999. 65(2): p. 746-751.
69. Corvini, P.F., et al., Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Appl Environ Microbiol, 2004. 70(11): p. 6897-900.
70. Corvini, P.F., et al., The degradation of alpha-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism. Appl Microbiol Biotechnol, 2006. 70(1): p. 114-22.
71. Corvini, P.F.X., et al., Metabolism of a nonylphenol isomer by Sphingomonas sp strain TTNP3. Environmental Chemistry Letters, 2005. 2(4): p. 185-189.
72. Fujii, K., et al., Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol, 2001. 51(Pt 2): p. 603-10.
73. Gabriel, F.L., et al., A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram: ipso-hydroxylation and intramolecular rearrangement. J Biol Chem, 2005. 280(16): p. 15526-33.
74. Porter, A.W. and A.G. Hay, Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol. Appl Environ Microbiol, 2007. 73(22): p. 7373-9.
75. Porter, A.W., et al., Identification of the flavin monooxygenase responsible for ipso substitution of alkyl and alkoxyphenols in Sphingomonas sp. TTNP3 and Sphingobium xenophagum Bayram. Appl Microbiol Biotechnol, 2012. 94(1): p. 261-72.
76. Yuan, S.Y., C.H. Yu, and B.V. Chang, Biodegradation of nonylphenol in river sediment. Environ Pollut, 2004. 127(3): p. 425-30.
77. Ushiba, Y., Y. Takahara, and H. Ohta, Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol, 2003. 53(Pt 6): p. 2045-8.
78. Soares, A., et al., Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol Lett, 2003. 25(9): p. 731-8.
79. Lin, Y.W., et al., Growth of Pseudomonas sp. TX1 on a wide range of octylphenol polyethoxylate concentrations and the formation of dicarboxylated metabolites. Bioresour Technol, 2010. 101(8): p. 2853-9.
80. Tuan, N.N., Y.W. Lin, and S.L. Huang, Catabolism of 4-alkylphenols by Acinetobacter sp. OP5: Genetic organization of the oph gene cluster and characterization of alkylcatechol 2, 3-dioxygenase. Bioresour Technol, 2013. In press.
81. Tuan, N.N., et al., Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresour Technol, 2011. 102(5): p. 4232-40.
82. Shibata, A. and A. Katayama, Anaerobic co-metabolic oxidation of 4-alkylphenols with medium-length or long alkyl chains by Thauera sp., strain R5. Appl Microbiol Biotechnol, 2007. 75(5): p. 1151-61.
83. Corvini, P.F., et al., Contribution to the Detection and Identification of Oxidation Metabolites of Nonylphenol in Sphingomonas sp. strain TTNP3. Biodegradation, 2007. 18(2): p. 233-45.
84. Corvini, P.F., et al., Microbial degradation of a single branched isomer of nonylphenol by Sphingomonas TTNP3. Water Sci Technol, 2004. 50(5): p. 189-94.
85. Gabriel, F.L., et al., ipso-substitution: a general biochemical and biodegradation mechanism to cleave alpha-quaternary alkylphenols and bisphenol A. Chem Biodivers, 2007. 4(9): p. 2123-37.
86. Gabriel, F.L., et al., Elucidation of the ipso-substitution mechanism for side-chain cleavage of alpha-quaternary 4-nonylphenols and 4-t-butoxyphenol in Sphingobium xenophagum Bayram. Appl Environ Microbiol, 2007. 73(10): p. 3320-6.
87. Gabriel, F.L., et al., Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Appl Environ Microbiol, 2005. 71(3): p. 1123-9.
88. Takeo, M., et al., Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J Biosci Bioeng, 2006. 102(4): p. 352-61.
89. Cheng, C.Y., et al., Synthesis and determination of dicarboxylic degradation products of nonylphenol polyethoxylates by gas chromatography-mass spectrometry. J Chromatogr A, 2006. 1127(1-2): p. 246-253.
90. Di Corcia, A., et al., Characterization of recalcitrant intermediates from biotransformation of the branched alkyl side chain of nonylphenol ethoxylate surfactants. Environmental Science & Technology, 1998. 32(16): p. 2401-2409.
91. Montgomery-Brown, J., et al., Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment. Water Res, 2003. 37(15): p. 3672-3681.
92. Thibaut, R., et al., Urinary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss). Science of the Total Environment, 1999. 233(1-3): p. 193-200.
93. Junghanns, C., et al., Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology, 2005. 151(Pt 1): p. 45-57.
94. van Beilen, J.B., D. Penninga, and B. Witholt, Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem, 1992. 267(13): p. 9194-201.
95. Nieboer, M., J. Kingma, and B. Witholt, The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Mol Microbiol, 1993. 8(6): p. 1039-51.
96. Kok, M., et al., The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem, 1989. 264(10): p. 5435-41.
97. van Beilen, J.B., et al., Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology-Sgm, 2001. 147: p. 1621-1630.
98. Shanklin, J. and E. Whittle, Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett, 2003. 545(2-3): p. 188-92.
99. Ohe, T., T. Mashino, and M. Hirobe, Substituent elimination from p-substituted phenols by cytochrome P450. ipso-Substitution by the oxygen atom of the active species. Drug Metab Dispos, 1997. 25(1): p. 116-22.
100. Gonzalez-Toril, E., et al., Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol, 2003. 69(8): p. 4853-65.
101. Powlowski, J. and V. Shingler, Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation, 1994. 5(3-4): p. 219-36.
102. Takeo, M., et al., Purification and characterization of catechol 2,3-dioxygenase from the aniline degradation pathway of Acinetobacter sp. YAA and its mutant enzyme, which resists substrate inhibition. Biosci Biotechnol Biochem, 2007. 71(7): p. 1668-75.
103. Arai, H., et al., Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology, 1998. 144 ( Pt 10): p. 2895-903.
104. Muller, C., et al., Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J Bacteriol, 1996. 178(7): p. 2030-6.
105. Zhu, C., L. Zhang, and L. Zhao, Molecular cloning, genetic organization of gene cluster encoding phenol hydroxylase and catechol 2,3-dioxygenase in Alcaligenes faecalis IS-46 World Journal of Microbiology and Biotechnology, 2008. 24: p. 1687-1695.
106. Zhang, H., H. Luo, and Y. Kamagata, Characterization of the Phenol Hydroxylase from Burkholderia kururiensis KP23 Involved in Trichloroethylene Degradation by Gene Cloning and Disruption. Microbes and Environments, 2003. 18: p. 167-173
107. Santos, P.M. and I. Sa-Correia, Characterization of the unique organization and co-regulation of a gene cluster required for phenol and benzene catabolism in Pseudomonas sp. M1. J Biotechnol, 2007. 131(4): p. 371-8.
108. Nordlund, I., J. Powlowski, and V. Shingler, Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol, 1990. 172(12): p. 6826-33.
109. Powlowski, J. and V. Shingler, In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol, 1990. 172(12): p. 6834-40.
110. Schirmer, F., S. Ehrt, and W. Hillen, Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol, 1997. 179(4): p. 1329-36.
111. Soares, A., B. Guieysse, and B. Mattiasson, Biodegradation of nonylphenol in a continuous packed-bed bioreactor. Biotechnol Lett, 2003. 25(12): p. 927-33.
112. Sasaki, M., et al., Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation, 2005. 16(5): p. 449-59.
113. Sasaki, M., T. Tsuchido, and Y. Matsumura, Molecular cloning and characterization of cytochrome P450 and ferredoxin genes involved in bisphenol A degradation in Sphingomonas bisphenolicum strain AO1. J Appl Microbiol, 2008. 105(4): p. 1158-69.
114. Toyama, T., et al., Biodegradation of bisphenol A and 4-alkylphenols by Novosphingobium sp. strain TYA-1 and its potential for treatment of polluted water. Water Sci Technol, 2012. 66(10): p. 2202-8.
115. Harayama, S., M. Kok, and E.L. Neidle, Functional and Evolutionary Relationships among Diverse Oxygenases. Annual Review of Microbiology, 1992. 46: p. 565-601.
116. Kovacs, J.A., Biochemistry. How iron activates O2. Science, 2003. 299(5609): p. 1024-5.
117. Lipscomb, J.D., Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol, 1994. 48: p. 371-99.
118. Powlowski, J., et al., On the role of DmpK, an auxiliary protein associated with multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Biol Chem, 1997. 272(2): p. 945-51.
119. Griva, E., et al., Phenol hydroxylase from Acinetobacter radioresistens S13. Isolation and characterization of the regulatory component. Eur J Biochem, 2003. 270(7): p. 1434-40.
120. Sazinsky, M.H., et al., X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase. Biochemistry, 2006. 45(51): p. 15392-404.
121. McCormick, M.S. and S.J. Lippard, Analysis of substrate access to active sites in bacterial multicomponent monooxygenase hydroxylases: X-ray crystal structure of xenon-pressurized phenol hydroxylase from Pseudomonas sp. OX1. Biochemistry, 2011. 50(51): p. 11058-69.
122. Harayama, S. and M. Rekik, Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem, 1989. 264(26): p. 15328-33.
123. Gadkar, K.G., et al., Estimating optimal profiles of genetic alterations using constraint-based models. Biotechnol Bioeng, 2005. 89(2): p. 243-51.
124. Que, L., Jr. and R.Y. Ho, Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. Chem Rev, 1996. 96(7): p. 2607-2624.
125. Orville, J.D.L.a.A.M., Metal Ions in Biological Systems. H. Sigel, A. Sigel ed. Vol. 28. 1992, Nwe York. 243.
126. Orville, A.M., et al., Structures of competitive inhibitor complexes of protocatechuate 3,4-dioxygenase: multiple exogenous ligand binding orientations within the active site. Biochemistry, 1997. 36(33): p. 10039-51.
127. Orville, A.M., J.D. Lipscomb, and D.H. Ohlendorf, Crystal structures of substrate and substrate analog complexes of protocatechuate 3,4-dioxygenase: endogenous Fe3+ ligand displacement in response to substrate binding. Biochemistry, 1997b. 36(33): p. 10052-66.
128. Sacco, C., et al., Alkylphenol polyethoxylate removal in a pilot-scale reed bed and phenotypic characterization of the aerobic heterotrophic community. Water Environ Res, 2006. 78(7): p. 754-63.
129. Ohlendorf, D.H., J.D. Lipscomb, and P.C. Weber, Structure and assembly of protocatechuate 3,4-dioxygenase. Nature, 1988. 336(6197): p. 403-5.
130. Dorn, E. and H.J. Knackmuss, Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J, 1978. 174(1): p. 73-84.
131. Broderick, J.B. and T.V. O’Halloran, Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry, 1991. 30(29): p. 7349-58.
132. Briganti, F., et al., Purification, biochemical properties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresistens. FEBS Lett, 1997. 416(1): p. 61-4.
133. Durham, D.R., et al., Intergeneric evolutionary homology revealed by the study of protocatechuate 3,4-dioxygenase from Azotobacter vinelandii. Biochemistry, 1980. 19(1): p. 149-55.
134. Travkin, V.M., et al., Characterization of an intradiol dioxygenase involved in the biodegradation of the chlorophenoxy herbicides 2,4-D and 2,4,5-T. FEBS Lett, 1997. 407(1): p. 69-72.
135. Saxena, P. and I.S. Thakur, Purification and characterization of catechol 1, 2-dioxygenase of Pseudomonas fluorescens for degradation of 4-chlorobenzoic acid. Indian Journal of Biotechnology, 2005. 4: p. 134-138.
136. Strachan, P.D., A.A. Freer, and C.A. Fewson, Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIMB 13259 and cloning and sequencing of its catA gene. Biochem J, 1998. 333 ( Pt 3): p. 741-7.
137. Suzuki, K., et al., Differential expression of two catechol 1,2-dioxygenases in Burkholderia sp. strain TH2. J Bacteriol, 2002. 184(20): p. 5714-22.
138. Shen, X.H., Z.P. Liu, and S.J. Liu, Functional identification of the gene locus (ncg12319 and characterization of catechol 1,2-dioxygenase in Corynebacterium glutamicum. Biotechnol Lett, 2004. 26(7): p. 575-80.
139. Wang, C.-L., S.-L. You, and S.-L. Wang, Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source. Process Biochemistry, 2006. 41(7): p. 1594-1601.
140. Cha, C.-J., Catechol 1,2-dioxygenase from Rhodococcus rhodochrous N75 capable of metabolizing alkyl-substituted catechols. Microbiol. Biotechnol., 2006. 16(5): p. 778-785.
141. Matsumura, E., et al., Constitutive synthesis, purification, and characterization of catechol 1,2-dioxygenase from the aniline-assimilating bacterium Rhodococcus sp. AN-22. J Biosci Bioeng, 2004. 98(2): p. 71-6.
142. Di Nardo, G., et al., Catalytic properties of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13 immobilized on nanosponges. Dalton Trans, 2009(33): p. 6507-12.
143. Patel, R.N., et al., Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus: purification and properties. J Bacteriol, 1976. 127(1): p. 536-44.
144. Murakami, S., et al., Purification and characterization of four catechol 1,2-dioxygenase isozymes from the benzamide-assimilating bacterium Arthrobacter species BA-5-17. Microbiol Res, 1998. 153(2): p. 163-71.
145. Fujiwara, M., et al., Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. J Biol Chem, 1975. 250(13): p. 4848-55.
146. Walsh, T.A., et al., Rapid reaction studies on the oxygenation reactions of catechol dioxygenase. J Biol Chem, 1983. 258(23): p. 14422-7.
147. Nakai, C., T. Nakazawa, and M. Nozaki, Purification and properties of catechol 1,2-dioxygenase (pyrocatechase) from Pseudomonas putida mt-2 in comparison with that from Pseudomonas arvilla C-1. Arch Biochem Biophys, 1988. 267(2): p. 701-13.
148. Wang, C.L., et al., Production of catechol from benzoate by the wild strain Ralstonia species Ba-0323 and characterization of its catechol 1,2-dioxygenase. Biosci Biotechnol Biochem, 2001. 65(9): p. 1957-64.
149. Aoki, K., et al., Purification and characterization of catechol 1,2-dioxygenase from aniline-assimilating Rhodococcus erythropolis AN-13. Biol. Chem. , 1984. 48: p. 2087-2095.
150. Solyanikova, I.P., et al., Isolation and characterization of catechol 1,2-dioxygenases from Rhodococcus rhodnii strain 135 and Rhodococcus rhodochrous strain 89: comparison with analogous enzymes of the ordinary and modified ortho-cleavage pathways. Biochemistry (Mosc), 1999. 64(7): p. 824-31.
151. Caglio, R., et al., Fine-tuning of catalytic properties of catechol 1,2-dioxygenase by active site tailoring. Chembiochem, 2009. 10(6): p. 1015-24.
152. Malaguarnera, G., et al., Toxic hepatitis in occupational exposure to solvents. World J Gastroenterol, 2012. 18(22): p. 2756-66.
153. Harwood, C.S. and R.E. Parales, The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol, 1996. 50: p. 553-90.
154. Zhan, Y., et al., Comparative analysis of the complete genome of an Acinetobacter calcoaceticus strain adapted to a phenol-polluted environment. Res Microbiol, 2012. 163(1): p. 36-43.
155. Jimenez, J.I., et al., Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol, 2002. 4(12): p. 824-41.
156. Vetting, M.W. and D.H. Ohlendorf, The 1.8 A crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure, 2000. 8(4): p. 429-40.
157. Earhart, C.A., et al., Crystallization of catechol-1,2 dioxygenase from Pseudomonas arvilla C-1. J Mol Biol, 1994. 236(1): p. 377-8.
158. Eulberg, D. and M. Schlomann, The putative regulator of catechol catabolism in Rhodococcus opacus 1CP--an IclR-type, not a LysR-type transcriptional regulator. Antonie Van Leeuwenhoek, 1998. 74(1-3): p. 71-82.
159. Eulberg, D., L.A. Golovleva, and M. Schlomann, Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J Bacteriol, 1997. 179(2): p. 370-81.
160. Ridder, L., et al., Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1. Eur J Biochem, 1998. 257(1): p. 92-100.
161. Matera, I., et al., Catechol 1,2-dioxygenase from the Gram-positive Rhodococcus opacus 1CP: quantitative structure/activity relationship and the crystal structures of native enzyme and catechols adducts. J Struct Biol, 2010. 170(3): p. 548-64.
162. Sugiyama, K., et al., Crystallization and preliminary crystallographic analysis of a 2,3-dihydroxybiphenyl dioxygenase from Pseudomonas sp. strain KKS102 having polychlorinated biphenyl (PCB)-degrading activity. Proteins, 1995. 22(3): p. 284-6.
163. Han, S., et al., Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science, 1995. 270(5238): p. 976-80.
164. Heiss, G., et al., Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J Bacteriol, 1995. 177(20): p. 5865-71.
165. Eltis, L.D. and J.T. Bolin, Evolutionary relationships among extradiol dioxygenases. J Bacteriol, 1996. 178(20): p. 5930-7.
166. Spence, E.L., et al., Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases. J Bacteriol, 1996. 178(17): p. 5249-56.
167. Wolgel, S.A., et al., Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase. J Bacteriol, 1993. 175(14): p. 4414-26.
168. Eltis, L.D., et al., Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J Biol Chem, 1993. 268(4): p. 2727-32.
169. Boldt, Y.R., et al., A manganese-dependent dioxygenase from Arthrobacter globiformis CM-2 belongs to the major extradiol dioxygenase family. J Bacteriol, 1995. 177(5): p. 1225-32.
170. Merimaa, M., et al., Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes. Arch Microbiol, 2006. 186(4): p. 287-96.
171. Kukor, J.J. and R.H. Olsen, Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl Environ Microbiol, 1996. 62(5): p. 1728-40.
172. Kim, K.P., et al., Characteristics of catechol 2,3-dioxygenase produced by 4-chlorobenzoate-degrading Pseudomonas sp. S-47. J. Microbiol., 1997. 35: p. 295-299.
173. Murakami, S., et al., Purification, characterization, and gene analysis of catechol 2,3-dioxygenase from the aniline-assimilating bacterium Pseudomonas species AW-2. Biosci Biotechnol Biochem, 1998. 62(4): p. 747-52.
174. Mars, A.E., et al., Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J Bacteriol, 1999. 181(4): p. 1309-18.
175. Kim, D., et al., Functional characterization and molecular modeling of methylcatechol 2,3-dioxygenase from o-xylene-degrading Rhodococcus sp. strain DK17. Biochem Biophys Res Commun, 2005. 326(4): p. 880-6.
176. Viggiani, A., et al., The role of the conserved residues His-246, His-199, and Tyr-255 in the catalysis of catechol 2,3-dioxygenase from Pseudomonas stutzeri OX1. J Biol Chem, 2004. 279(47): p. 48630-9.
177. Cerdan, P., et al., Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J Bacteriol, 1994. 176(19): p. 6074-81.
178. Takeo, M., et al., Purification and characterization of alkylcatechol 2,3-dioxygenase from butylphenol degradation pathway of Pseudomonas putida MT4. J Biosci Bioeng, 2007. 104(4): p. 309-14.
179. Kang, B.S., et al., Structure of catechol 2,3-dioxygenase gene from Alcaligenes eutrophus 335. Biochem Biophys Res Commun, 1998. 245(3): p. 791-6.
180. Ng, L.C., C.L. Poh, and V. Shingler, Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. J Bacteriol, 1995. 177(6): p. 1485-90.
181. Hugo, N., et al., A novel -2Fe-2S- ferredoxin from Pseudomonas putida mt2 promotes the reductive reactivation of catechol 2,3-dioxygenase. J Biol Chem, 1998. 273(16): p. 9622-9.
182. Cho, J.H., et al., Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas. J Biol Chem, 2009. 284(49): p. 34321-30.
183. Vaillancourt, F.H., J.T. Bolin, and L.D. Eltis, The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol, 2006. 41(4): p. 241-67.
184. Ferguson, P.L., C.R. Iden, and B.J. Brownawell, Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage-impacted urban estuary. Environ Sci Technol, 2001. 35(12): p. 2428-35.
185. Sahambi, S.K., et al., Oral p-tert-octylphenol exposures induce minimal toxic or estrogenic effects in adult female Sprague-Dawley rats. J Toxicol Environ Health A, 2010. 73(9): p. 607-22.
186. Martin, O.V. and N. Voulvoulis, Sustainable risk management of emerging contaminants in municipal wastewaters. Philos Transact A Math Phys Eng Sci, 2009. 367(1904): p. 3895-922.
187. Koh, Y.K., et al., Fate and occurrence of alkylphenolic compounds in sewage sludges determined by liquid chromatography tandem mass spectrometry. Environ Technol, 2009. 30(13): p. 1415-24.
188. Viggiani, A., et al., An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1. J Biotechnol, 2006. 123(4): p. 464-77.
189. Toyama, T., et al., Isolation and characterization of a novel 2-sec-butylphenol-degrading bacterium Pseudomonas sp. strain MS-1. Biodegradation, 2009.
190. Reichlin, F. and H.P. Kohler, Pseudomonas sp. strain HBP1 Prp degrades 2-isopropylphenol (ortho-cumenol) via meta cleavage. Appl Environ Microbiol, 1994. 60(12): p. 4587-91.
191. Chen, H.J., S.L. Huang, and D.H. Tseng, Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms. Environ Technol, 2004. 25(2): p. 201-10.
192. Youssef, N., et al., In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol, 2007. 73(4): p. 1239-47.
193. Ausubel, F.M., et al., Current Protocols in Molecular Biology. ringbou ed2003, John Wiley & Sons Inc.
194. Heuer, H., et al., Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol, 1997. 63(8): p. 3233-41.
195. Ferris, M.J., G. Muyzer, and D.M. Ward, Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol, 1996. 62(2): p. 340-6.
196. Thompson, J.D., et al., The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997: p. 25:4876-4882.
197. Llorca-Porcel, J., et al., Analysis of chlorophenols, bisphenol-A, 4-tert-octylphenol and 4-nonylphenols in soil by means of ultrasonic solvent extraction and stir bar sorptive extraction with in situ derivatisation. J Chromatogr A, 2009. 1216(32): p. 5955-61.
198. Passman, D.F.J., K. Rossmoore, and L. Rossmoore, Relationship between the presence of mycobacteria and non-mycobacteria in metalworking fluids. Tribology & lubrication technology, 2009(Special section): p. 52-55.
199. Tancsics, A., et al., Applicability of the functional gene catechol 1,2-dioxygenase as a biomarker in the detection of BTEX-degrading Rhodococcus species. J Appl Microbiol, 2008. 105(4): p. 1026-33.
200. Sei, K., et al., Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. J Biosci Bioeng, 1999. 88(5): p. 542-50.
201. Nakai, C., et al., Complete nucleotide sequence of the metapyrocatechase gene on the TOI plasmid of Pseudomonas putida mt-2. J Biol Chem, 1983. 258(5): p. 2923-8.
202. Ferrara, F., et al., Alkylphenolic compounds in edible molluscs of the Adriatic Sea (Italy). Environ Sci Technol, 2001. 35(15): p. 3109-12.
203. Leboulch, P., et al., Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J, 1994. 13(13): p. 3065-76.
204. Toyama, T., et al., Isolation and characterization of 4-tert-butylphenol-utilizing Sphingobium fuliginis strains from Phragmites australis rhizosphere sediment. Appl Environ Microbiol, 2010. 76(20): p. 6733-40.
205. Thompson, J.D., et al., The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997: p. 25:4876-4882.
206. Jung, C.M., et al., Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J Appl Microbiol, 2009. 106(2): p. 564-71.
207. Sambrook, J., E.F. Fristsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual. Vol. 1,2,3. 1989, NY: Cold Spring Harbor Laboratory Press.
208. Johnson, J., Similarity analyses of rRNAs. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds). Methods for General and Molecular Bacteriology. American Society for Microbiology: Washington, DC,, 1994: p. 683–700.
209. Lee, K. and D.T. Gibson, Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol, 1996. 62(9): p. 3101-6.
210. Routledge, E. and J. Sumpter, Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxiclogy and Chemistry, 1996. 15: p. 241-248.
211. Ma, M., L. Jian, and Z. Wang, Assessing the Detoxication Efficiencies of Wastewater Treatment Processes Using a Battery of Bioassays/Biomarkers. Arch. Environ. Contam. Toxicol., 2005. 49: p. 480–487.
212. Ensley, B.D., et al., Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science, 1983. 222(4620): p. 167-9. |