博碩士論文 962402003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.15.146.27
姓名 張純綾(Chun-Ling Chang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Thermodynamic studies of DNA complexes with antitumor platinum compounds and their analogs)
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effects of composition and thermal history on the properties of supported lipid bilayers
★ The effect of sterol on the POPE/DPPC membranes★ 麥角固醇對含膽固醇的脂雙層膜的影響
★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes★ Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes
★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質
★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study
★ The physical properties of phytosterol-containing lipid bilayers★ An AFM Study on Supported Lipid Bilayers with and without Sterol
★ β-谷固醇對POPE膜物理特性的影響★ 固醇結構對PC膜物理特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 順鉑(cis-Pt(NH3)2Cl2)是一種常用的抗癌藥物。順鉑的生物活性作用在DNA上會有強大的共價鍵結合和在雙螺旋結構產生中間單官能基(intermediate monofunctional)和雙官能基產物(bifunctional)並讓結構扭曲。雙官能基產物大部分為intrastrand crosslinks,intrastrand crosslinks也是在DNA上形成。
然而,順鉑是高度的細胞毒性且具有一些副作用,有些副作用會限制了它的應用。故了解DNA結合機制與順鉑的抗癌特性,有利於創造新的更有效的藥物。因此,與順鉑DNA複合物的熱力學和其他研究的特定和鉑化合物等目前已在進行。在報告本研究之前,熱力學研究主要是短鍊的DNA,雖然長鍊的DNA與鉑的結合更接近真實系統:故在此研究裡,我們有針對長鍊 DNA來進行研究。利用微分掃描熱分析儀(DSC)和紫外光譜儀進行研究。利用已開發的電腦軟體來處理實驗數據,並用模型來對實驗結果進行分析解釋。
但在之前的研究裡,有一些錯誤的觀念。如:一、熔化曲線(metling curve), 熔點(metling temperature),在DSC的實驗結果裡,熔點範圍(metling temperature range)有很強烈地區分。二、熔點和熔點範圍 沒有辦法從多峰 DSC 曲線獲得和使用。對此觀點,卻沒有任何證據。針對此一問題展開了研究。重新去計算”真實”DSC 熔化曲線。利用不同於在DSC軟體中所使用的計算方法,從不同熔化曲線,證明了DSC熔化曲線內的偏差是可以忽略。且發展一套適合的方法去量測熔點和熔點範圍在多峰DSC 曲線中且證實了其合理性。
在DNA和鉑化合物中的實驗,找到新的條件。且從實驗中,提供了兩個有用的優勢:首先,鉑化合物消除了長鍊 DNA的非特異性靜電穩定性(non-specific electrostatic stabilization)。其次,在高溫的熔化實驗(metling experiment)中鉑化合物提供了中間產物(intermediate products)穩定性。由於這些結果,由中間的單官能基(intermediate monofunctional)和最後的雙官能基產物(bifunctional product)所引起的熱穩定性(thermal stability)改變,可在單獨計量(separately measured) 和 對比第一次的無鉑結合的實驗。這表示鉑化合物會減少在雙螺旋線圈變化時(helix-coil transition)焓(enthalpy)和熵(entropy),增加熔點範圍和扭曲DSC熔化曲線。這與其他之前的結果相符合。然而這些破壞結構的因子 (destructive factors)永遠會降低 DNA熔點,但這只對短鍊 DNA如此。對於長鍊DNA卻不是。Transplatin和Pt[(dien)Cl]Cl 會增加DNA 熱穩定性(thermal stability),雖然他們的雙螺旋被破壞掉。我們證明此不尋常的結果是因為帶有大量正電荷(positive charge)的鉑化合物與雙螺旋結合中而產生的。
有一些鉑化合物和其他抗癌藥物也會形成DNA interstrand crosslinks。為了要解釋我們的實驗結果,我們研究了短鍊 DNA和長鍊 DNA的DNA interstrand crosslinks 熔化結果。這也是第一次針對crosslinking來研究局部不穩定熱因子(thermal impact of local distortions)。
摘要(英) Cisplatin (cis-Pt(NH3)2Cl2) is a commonly used anticancer drug. Biological activity of cisplatin is exerted by strong covalent binding to DNA and distortion of the double helix by formation of intermediate monofunctional and final bifunctional products. The majority of bifunctional products are intrastrand crosslinks. Additionally, interstrand crosslinks are formed in DNA.
However, cisplatin is highly cytotoxic and has a number of side effects that limit its application. Understanding the DNA binding mechanisms and anticancer properties of cisplatin facilitates creation of new more effective drugs. Therefore, a lot of thermodynamic and other investigations of DNA complexes with cisplatin and other platinum compounds have been carried out. However, before the present study, thermodynamic investigations were mainly fulfilled for short DNAs, although long platinated DNAs are much closer to real systems. In this work, studies of long DNAs were carried out using differential scanning calorimetry (DSC) and UV spectroscopy. Computer programs have been developed and used for the processing of these experimental data. Computer modeling was carried out to explain obtained experimental results.
There are widely spread mistaken opinions that 1) Melting curve, melting temperature, temperature melting range obtained in DSC experiments strongly distinguish from their real values; 2) Melting temperature and temperature melting range cannot be obtained and used for multi-peak DSC curves. However, there were no evidences or disclaimers of this viewpoint. That issue was studied in the present work. Thereto, a procedure for recalculation of DSC melting curves into "real" ones was worked out. Using different approaches, we have demonstrated that deviation of DSC melting curves from real differential melting curves is negligible. Suitable methods for determination of the melting temperature and temperature melting range in the case of multi-peak DSC curves were developed, and their reasonableness was confirmed.
New conditions for melting experiments of DNA with platinum compounds were found. They provide two useful advantages: firstly, elimination of the non-specific electrostatic stabilization of long DNA caused by platinum compounds and, secondly, stabilization of their intermediate products against high temperature of melting experiments. Thanks to those findings, a change in thermal stability caused by intermediate monofunctional and final bifunctional products was separately measured and compared for the first time.
It was shown that platinum compounds decrease the enthalpy and entropy of the helix-coil transition, increase the temperature melting range and destroy the fine structure of DSC curves. That is in agreement with the impact of other destructive factors known before. However, those destructive factors always decrease DNA melting temperature. In the case of complexes with platinum compounds, it is true only for short DNAs. For long DNAs, this general rule is not always held. Transplatin and Pt[(dien)Cl]Cl increase DNA thermal stability, although they destroy the structure of the double helix. The mechanism of such abnormal melting behavior has been found. We have demonstrated that the unusual effect is caused by large positive charge introduced by platinum compounds into the double helix.
Some platinum compounds and many other anticancer drugs form DNA interstrand crosslinks. To explain our experimental results, the influence of DNA interstrand crosslinks on melting of short and long DNAs was studied. For the first time, the thermal impact of local distortions caused by crosslinking agents was studied besides the crosslinking effect in itself.
關鍵字(中) ★ DNA 複合物和鉑化合物
★ 熱微差掃描分析儀
★ 光譜熔化研究
★ DNA platination 動力學
★ 高分辨熔解型材
★ 質粒DNA的熱力學
關鍵字(英) ★ DNA-complexes with platinum compounds
★ differential scanning calorimetry
★ optical melting studies
★ kinetics of DNA platination
★ high-resolution melting profiles
★ thermodynamics of plasmid DNA
論文目次 Abstract I
摘要 III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XII
List of Publications XIII
1. Introduction 1
2 The method of differential scanning calorimetry and processing of primary results 4
2.1 Preliminary remarks 4
2.2 Calculation of the sample baseline, DSC melting curve, calorimetric differential melting curve and calorimetric melting curve 5
2.3 Calculation of the excess heat capacity, enthalpy and entropy 7
2.4 Sample preparation for differential scanning calorimetry 10
3 Thermal Stability of DNA with Interstrand Crosslinks 11
3.1 Preliminary remarks 11
3.2 Model of melting for long DNA with interstrand crosslinks 12
3.3 The effect of interstrand crosslinks on melting of long DNAs 13
3.4 Comparison with experiment 16
3.5 The effect of interstrand crosslinks on melting of oligonucleotide duplexes 18
3.6 Conclusion 24
4 Temporal behavior of DNA thermal stability in the presence of platinum compounds. Role of monofunctional and bifunctional adducts 27
4.1 Preliminary remarks 27
4.2 Experimental methods 29
4.3 Thermal stability of short and long platinated DNAs in neutral medium 29
4.4 The influence of platinum compounds on thermal stability of long DNA in alkaline medium 31
4.5 The mechanism of a stronger decrease in thermal stability of platinated DNA in alkaline medium 34
4.6 The effect of interstrand crosslinks on DNA thermal stability 36
4.7 Cisplatin 36
4.8 Transplatin and its comparison with cisplatin 37
4.9 Conclusion 37
5 Theoretical modeling of the kinetics of DNA thermal stability under binding and transformation of cisplatin 39
5.1 Preliminary remarks 39
5.2 Binding to DNA and further transformation of cisplatin
39
5.3 Modeling of the time dependences of thermal stability and of the fractions of monofunctional and bifunctional adducts 40
5.4 Kinetics of cisplatin transformation and its influence on temporal behavior of DNA thermal stability under platination 42
5.5 Conclusion 45
6 Evaluation of errors in determination of DNA melting curves registered with differential scanning calorimetry 46
6.1 Preliminary remarks 46
6.2 Materials and methods 47
6.3 An exact representation of c 48
6.4 Calculation of real melting curve from calorimetric melting curve for the case of equal entropies of AT and GC base pairs (SAT=SGC) 49
6.5 Calculation of real melting curve from calorimetric melting curve without requirement of entropy equality 53
6.6 Conclusion 56
7 Processing of DSC melting curves and determination of their parameters 57
7.1 Preliminary remarks 57
7.2 Materials and methods 57
7.3 Processing of DSC curves 57
7.4 Determination of the melting temperature 61
7.5 Determination of the temperature melting range 67
7.6 The influence of ionic strength on DNA melting 70
7.7 Conclusion 72
8 Comparative thermodynamics of DNA chemically modified with antitumor drug cisplatin and its inactive analog transplatin 73
8.1 Preliminary remarks 73
8.2 Materials and methods 74
8.3 A structure of DSC thermograms and differential melting curves of DNA from Calf Thymus 74
8.4 A change in thermograms under DNA chemical modification with cisplatin and transplatin 76
8.5 The influence of antitumor drug cisplatin and its inactive analog transplatin on the parameters of DNA helix-coil transition at various ionic strengths 78
8.6 On the role of electrostatic interactions in thermodynamic properties of DNA complexes with platinum compounds 81
8.7 Compensation effects and explanation of disappearance of fine structure under platination 84
8.8 Conclusion 88
9 Conclusion and Future work 89
9.1 Conclusion 89
92 Future work 90
10 References 91
參考文獻 1. D. P. Bancroft, C. A. Lepre and S. J. Lippard. 195Pt NMR Kinetics and Mechanistic studies of cis- and trans-diamminedichloroplatinum(II) binding to DNA, J. Am. Chem. Soc. 112, N19, 6860-6871 (1990) (and references therein).
2. A. Halamikova, O. Vrana, J. Kasparkova and V. Brabec. Biochemical Studies of the Thermal Effects on DNA Modifications by the Antitumor Cisplatin and Their Repair, ChemBioChem. 8, N16, 2008-2015 (2007).
3. J. Kasparkova, V. Marini, V. Bursova and V. Brabec. Biophysical Studies on the Stability of DNA Intrastrand Cross-Links of Transplatin, Biophys. J. 95, N9, 4361–4371 (2008).
4. A. Cooper, M. A. Nutley, A. Wadood, Differential scanning microcalorimetry in S. E. Harding and B. Z. Chowdhry (Eds.), Protein-ligand interactions: hydrodynamics and calorimetry. Oxford University Press, Oxford New York, (2000) p. 287-318.
5. G. Bruylants, J. Wouters and C. Michaux. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Current Medicinal Chemistry, 2005, 12, 2011-2020.
6. T. V. Chalikian, J. Volker, G. E. Plum and K. J. Breslauer. A more unified picture for the thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volumetric techniques, Proc. Natl. Acad. Sci. USA 96, N14, 7853–7858 (1999).
7. G. P. Brewood, Y. Rangineni, D. J. Fish, A. S. Bhandiwad, D. R. Evans, R. Solanki, A. S. Benight. Electrical detection of the temperature induced melting transition of a DNA hairpin covalently attached to gold interdigitated microelectrodes. Nucleic Acids Res. 2008; 36(15): e98.
8. M. L. G. Dronkert and R. Kanaar. Repair of DNA interstrand cross-links, Mutat Res. 486, N4, 217-247 (2001).
9. D. M. Noll, T. M. Mason and P. S. Miller. Formation and repair of interstrand cross-links in DNA, Chem. Rev. 106, N2, 277-301 (2006).
10. O. D. Schärer. DNA interstrand crosslinks: natural and drug-induced DNA adducts that induce unique cellular responses, ChemBioChem. 6, N1, 27-32 (2005).
11. G. J. Atwell, B. M. Yaghi, P. R. Turner, M. Boyd, C. J. O’Connor and L. R. Ferguson. Synthesis, DNA interactions and biological activity of DNA minor groove targeted polybenzamide-linked nitrogen mustards, Bioorg Med Chem. 3, N6, 679-691 (1995).
12. E. N. Galyuk, R. M. Wartell, Yu. M. Dosin and D. Y. Lando. DNA denaturation under freezing in alkaline medium, J Biomol Struct Dynam. 26, N4, 517-524 (2009) and references therein.
13. J. T. Millard and M. M. White. Diepoxybutane cross-links DNA at 5’-GNC sequences, Biochemistry 32, N8, 2120-2124 (1993).
14. A. E. Ferentz and G. L. Verdine. The convertible nucleoside approach: structural engineering of nucleic acids, Nucleic Acids & Molecular Biology 8, 14-40 (1994).
15. C. Hofr and V. Brabec. Thermal and thermodynamic properties of duplex DNA containing site-specific interstrand cross-link of antitumor cisplatin or its clinically ineffective trans isomer, V. J Biol Chem. 276, N13, 9655-9661 (2001).
16. C. Hofr and V. Brabec. Thermal stability and energetics of 15-mer DNA duplex interstrand crosslinked by trans-diamminedichloroplatinum(II), Biopolymers 77, N4, 222-229 (2005).
17. J. Kasparkova, M. Vojtiskova, G. Natile and V. Brabec. Unique properties of DNA interstrand cross-links of antitumor oxaliplatin and the effect of chirality of the carrier ligand, Chem. Eur. J. 14, N4, 1330-1341 (2008).
18. D. Poland. Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlation, Biopolymers 13, N9, 1859-1871 (1974).
19. M. Fixman and J. J. Freire. Theory of DNA melting curves, Biopolymers 16, N12, 2693-2704 (1977).
20. R. M. Wartell and A. S. Benight. Thermal denaturation of DNA molecules: a comparison of theory with experiment, Physics Reports 126, N2, 67–107 (1985).
21. R. D. Blake, J. W. Bizzaro, J. D. Blake, G. R. Day, S. G Delcourt, J. Knowles, K. A. Marx and J. SantaLucia. Statistical mechanical simulation of polymeric DNA melting with MELTSIM, Jr. Bioinformatics 15, N5, 370-375 (1999).
22. D. Y. Lando, A. S. Fridman and R. Wartell. Thermodynamics of DNA containing very stable chemically modified base pairs, J Biomol Struct Dynam 20, N4, 533-546 (2003).
23. D. Y. Lando, A. S. Fridman and Chin-Kun Hu. Influence of strongly stabilized sites on DNA melting: a comparison of theory with experiment, EPL, 91, N3, 38003 (2010).
24. D. Y. Lando, A. S. Fridman, S. G. Haroutiunian, A. S. Benight and Ph. Collery. Melting of cross-linked DNA IV. Methods for computer modeling of total influence on DNA melting of monofunctional adducts, intrastrand and interstrand cross-links formed by molecules of an antitumor drug, J Biomol Struct Dynam 17, N4, 697-711 (2000).
25. D. Y. Lando, A. S. Fridman, A. G. Kabak and A. A. Akhrem. Melting of cross-linked DNA: II. Influence of interstrand linking on DNA stability, J Biomol Struct Dynam 15, N1, 141-150 (1997).
26. A. S. Fridman, E. N. Galyuk, V. I. Vorob’ev, A. N. Skvortsov and D. Y. Lando. Melting of crosslinked DNA: VI. Comparison of influence of interstrand crosslinks and other chemical modifications formed by antitumor compounds on DNA stability, J Biomol Struct Dynam 26, N2,175-186 (2008).
27. L. A. Marky and K. J. Breslauer. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves, Biopolymers 26, N9,1601-1620 (1987).
28. K. J. Breslauer. Extracting Thermodynamic Data from Equilibrium Melting Curves for Oligonucleotide Order-Disorder Transitions, Methods in Enzymology 259, 221-242 (1995).
29. F. Manyanga, M. T. Horne, G. P. Brewood, D. J. Fish, R. Dickman and A. S. Benight. Origins of the "nucleation" free energy in the hybridization thermodynamics of short duplex DNA, J. Phys. Chem. B, 113, N9, 2556-2563 (2009).
30. A. M. J. Fichtinger-Schepman, J. L. Van der Veer, J. H. J. Den Hartog, P. H. M. Lohman and J. Reedijk. Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation, J. Biochemistry 24, N3, 707-713 (1985).
31. A. Eastman. Reavaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA, Biochemistry 25, N13, 3912-3915 (1986).
32. A. Eastman The formation isolation and characterization of DNA adducts produced by anticancer platinum complexes, Pharmacol Ther. 34, N2, 155-166 (1987).
33. A. M. J Fichtinger-Schepman, A. T. van Oosterom, P. H. M. Lohman and F. Berends. Cis Diamminedichloroplatinum(II)-induced DNA adducts in peripheral leukocytes from seven cancer patients: quantitative immunochemical detection of the adduct induction and removal after a single dose of cis-diamminedichloroplatinum(II), Cancer Res. 47, N11, 3000-3004 (1987).
34. D. Y. Lando. Melting of cross-linked DNA I. Model and theoretical methods , J Biomol Struct Dynam. 15, N1, 129-140 (1997).
35. E. N. Galyuk, A. S. Fridman, V. I. Vorob’ev, S. G. Haroutiunian, S. A. Sargsyan, M. M. Hauruk and D. Y. Lando. Compensation of DNA stabilization and destabilization effects caused by cisplatin is partially disturbed in alkaline medium, J Biomol Struct Dyn., 25, N4, 407-418 (2008).
36. J. Kasparkova, O.Novakova, O. Vrana, N. Farrell and V. Brabec. Effect of geometric isomerism in dinuclear platinum antitumor complexes on DNA interstrand cross-linking, Biochemistry 38, N34, 10997-11005 (1999).
37. N. Farrell, Y. Qu, L. Feng and B. van Houten. Comparison of Chemical Reactivity, Cytotoxicity, Interstrand Cross-Linking and DNA Sequence Specificity of Bis(platinum) Complexes Containing Monodentate or Bidentate Coordination Spheres with Their Monomeric Analogues, Biochemistry, 29, N41, 9522-9531 (1990).
38. H.-T. Lee, I. Khutsishvili and L. A. Marky. DNA complexes containing joined triplex and duplex motifs: melting behavior of intramolecular and bimolecular complexes with similar sequences, J. Phys. Chem. B, 114, N1, 541-548 (2010).
39. D. S. Pilch, S. U. Dunham, E. R. Jamieson, S. J. Lippard and K. J. Breslauer. DNA sequence context modulates the impact of a cisplatin 1,2-d(GpG) intrastrand cross-link on the conformational and thermodynamic properties of duplex DNA, J Mol Biol. 296, N3, 803-812 (2000).
40. G. I. Chogovadze, A. V. Vologodskii and M. D. Frank-Kamenetskii. Effect of additional links weakening or stabilizing the double helix at the melting point of DNA, Mol. Biol., 14, N2, 369-374 (1980).
41. A. L. Pinto and S. J. Lippard. Binding of antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA, Biochim. Biophys. Acta, 780, N3, 167-180 (1985).
42. S. E. Sherman and S. J. Lippard. Structural Aspects of Platinum Anticancer Drug Interactions with DNA, Chem. Rev. 87, N5, 1153-1181 (1987).
43. E. R. Jamieson and S. J. Lippard. Structure, Recognition, and Processing of Cisplatin-DNA Adducts, Chem. Rev. 99, N9, 2467-2498 (1999).
44. D. Wang and S. J. Lippard. Cellular processing of platinum anticancer drugs, Nat. Rev. Drug Discov. 4, N4, 307-320 (2005).
45. Y. P. Ho, S. C. F. Au-Yeung and K. K. W. To. Platinum-Based Anticancer Agents: Innovative Design Strategies and Biological Perspectives, Med. Res. Rev. 23, N5, 633-655 (2003).
46. V. Brabec and M. Leng. DNA interstrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues, P. Natl. Acad. Sci. USA 90, N11, 5345-5349 (1993).
47. O. Vrana, V. Boudny and V. Brabec. Superhelical torsion controls DNA interstrand crosslinking by antitumor cis-diamminedichloroplatinum(II), Nucleic Acids Res. 24, N20, 3918-3925 (1996).
48. M. A. Lemare, A. Schwartz, R. A. Rahmouni and M. Leng. Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum (II) and DNA, Proc. Natl. Acad. Sci. USA 88, N5, 1982-1985 (1991).
49. P. B. Hopkins, J. T. Millard, J. Woo, M. F. Weidner, J. J. Kirchner, S. T. Sigmasson and S. Raucher. Sequence preferences of DNA interstrand cross-linking agents: Importance of minimal DNA structural reorganization in the cross-linking reactions of mechlorethamine, cisplatin and mitomycin C, Tetrahedron 47, N14-15, 2475-2489 (1991).
50. A. Eastman. Characterization of the Adducts produced in DNA by cis-diamminedichloroplatinum(II) and cis-dichloro(ethylenediamine)platinum(II), Biochemistry 22, N16, 3927-3933 (1983).
51. X. -M. Hou, X. H. Zhang, K. J. Wei, C. Ji, S. X. Dou, W. C. Wang, M. Li and P. Y. Wang. Cisplatin induces loop structures and condensation of single DNA molecules, Nucleic Acids Res. 37, N5, 1400-1410 (2009).
52. K. M. Comess and S. J. Lippard. Molecular aspects of platinum-DNA interactions. In Molecular aspects of Anti-cancer Drug-DNA Interactions, Macmillan, London, (1993).
53. A. Eastman, M. M. Jennerwein and D. L. Nagel. Characterization of bifunctional adducts produced in DNA by trans-diamminedichloroplatinum(II)m, Chem.-Biol. Interact. 67, N1-2, 71-80 (1988).
54. M. Boudvillain, R. Dalbis, C. Aussourd and M. Leng. Intrastrand cross-links are not formed in the reaction between transplatin and native DNA: relation with the clinical inefficiency of transplatin, Nucleic Acids Res. 23, N13, 2381-2388 (1995).
55. E. Bernal-Mendez, M. Boudvillain, F. Gonzalez-Vilchez and M. Leng. Chemical versatility of transplatin monofunctional adducts within multiple site-specifically platinated DNA, Biochemistry 36, N24, 7281-7287 (1997).
56. F. Paquet, M. Boudvillain, G. Lancelot and M. Leng. NMR solution structure of a DNA dodecamer containing a transplatin interstrand GN7-CN3 cross-link, Nucleic Acids Res. 27, N21, 4261-4268 (1999).
57. A. Eastman and M. A. Barry. Interaction of trans-diamminedichloroplatinum(II) with DNA: formation of monofunctional adducts and their reaction with glutathione, Biochemistry 26, N12, 3303-3307 (1987).
58. A. Zakovska, O. Novakova, Z. Balcarova, U. Bierbach, N. Farrell and V. Brabec. DNA interactions of antitumor trans-[PtCl2(NH3)(quinoline)], Eur. J. Biochem. 254, N3, 547-557 (1998).
59. F. Coste, J.-M. Malinge, L. Serre, W. Shepard, M. Roth, M. Leng and C. Zelwer. Crystal structure of double-stranded DNA containing cisplatin interstrand cross-link at 1.63A resolution: hydration at the platinated site. Nucleic Acids Res. 27, N8, 1837-1846 (1999).
60. P. M. Takahara, A. C. Rosenzweig, C. A. Frederick and S. J. Lippard. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin, Nature 37
61. S. S. G. E. Van Boom, D. Yang, J. Reedijk, G. A. van der Marel and A. H. -J. Wang. Structural Effect of Intra-strand Cisplatin-crosslink on Palindromic DNA Sequences, J. Biomol. Struct. Dyn. 13, N6, 989-998 (1996).
62. F. Paquet, C. Perez, M. Leng, G. Lancelot and J. M. Malinge. NMR Solution Structure of a DNA Decamer Containing an Interstrand Cross-link of the Antitumor Drug cis-diamminedichloroplatinum(II), J. Biomol. Struct. Dyn. 14, N1,67-77 (1996).
63. J. M. Malinge, M. J. Giraud-Panis and M. Leng. Interstrand cross-links of cisplatin induce striking distortions in DNA, J. Inorg. Biochem. 77, N1-2, 23-29 (1999).
64. R. C. Todd and S. J. Lippard. Structure of duplex DNA containing the cisplatin 1,2-{Pt(NH3)2}2+-d(GpG) cross-link at 1.77 A resolution, J. Inorg. Biochem. 104, N9, 902-908 (2010).
65. S. Ramachandran, B. R. Temple, S. G. Chaney and N. V. Dokholyan. Structural basis for the sequence-dependent effects of platinum–DNA adducts, Nucleic Acids Res. 37, N8, 2434-2448 (2009).
66. V. Bursova, J. Kasparkova, C. Hofr and V. Brabec. Effects of monofunctional adducts of platinum(II) complexes on thermodynamic stability and energetics of DNA duplexes, Biophys. J. 88, N2, 1207-1214 (2005).
67. V. Brabec, J. Reedijk and M. Leng. Sequence-Dependent Distortions Induced in DNA by Monofunctional Platinum(II) Binding, Biochemistry 31, N49, 12397-12402 (1992).
68. C. Bauer, T. Peleg-Shulman, D. Gibson and A. H. J. Wang. Monofunctional platinum amine complexes destabilize DNA significantly, Eur. J. Biochem. 256, N2, 253-260 (1998).
69. R. Zaludova, V. Kleinwachter and V. Brabec. The effect of ionic strength on melting of DNA modified by platinum(II) complexes, Biophys. Chem. 60, N3, 135-142 (1996).
70. B. I. Kankia, A. M. Soto, N. Burns, R. Shikiya, C. S. Tung and L. A. Marky. DNA oligonucleotide duplexes containing intramolecular platinated cross-links: Energetics, hydration, sequence, and ionic effects, Biopolymers 65, N3, 218 – 227 (2002).
71. N. Poklar, D. S. Pilch, S. J. Lippard, E. A. Redding, S. U. Dunham and K. J. Breslauer. Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability, and energetics of a 20-mer DNA duplex, P. Natl. Acad. Sci. USA 93, N15, 7606-7611 (1996).
72. D. Hermann, C. Houssier and W. Guschlbauer. Dissociation of double-stranded poly(I)poly(C) by cis-diamminedichloro-Pt(II), Biochim. Biophys. Acta 564, N3, 456-472 (1979).
73. J. L. Butour and J. P. Macquet. Viscosity, nicking, thermal and alkaline denaturation studies on three classes of DNA-platinum complexes, Biochim. Biophys. Acta 653, N3, 305-315 (1981).
74. S. G. Haroutiunian, B. Bruni, R. Monnani, P. Orioli and S. Mangani. The dependence of cis-DDP binding to DNA upon GC-content: a thermal and Spectrophotometrical investigations, Inorg. Chim. Acta 184, N1, 127 –132 (1991).
75. S. G. Haroutiunian, E. B. Dalian, V. F. Morozov, Eu. Sh. Mamasachlissov, M. S. Shahinian, A. A. Akhrem, D. Y. Lando, L. Messori and P. Orioli. Influence of cis- and trans-Diamminedichloroplatinum (II) Binding on the Helix-Coil Transition of DNA’s with Different GC-Content, Inorg. Chim. Acta V.275-276, 510-514 (1998).
76. G. Natarajan, R. Malathi and E. Holler. Helix-Coil Transition in DNA Using a pH Variation Method: Case of a Melting Paradox as a Function of Ionic Strength, Anal. Biochem. 237, N1, 152-155 (1996).
77. R. Malathi, G. Natarajan and E. Hooller. Helix-Coil Transition in DNA by Novel Pt(II) Complexes: A pH Melting Study, J. Biomol. Struct. Dyn. 15, N6, 1773-1780 (1998).
78 47. Y. B. Dalyan, T. S. Haroiutunyan, S. G. Haroiutunyan and P. O. Vardevanian. Melting of complexes of DNA-cis-DDP in Acidic Environment, Exp. Mol. Med. 35, N6, 527-533 (2003).
79. H. Loskotova and V. Brabec. DNA interactions of cisplatin tethered to the DNA minor groove binder distamycin, Eur. J. Biochem. 266, N2, 392-402 (1999).
80. R. Prokop, J. Kasparkova, O. Novakova, V. Marini, A. M. Pizarro, C. Navarro-Ranninger and V. Brabec. DNA interactions of new antitumor platinum complexes with trans geometry activated by a 2-metylbutylamine or sec-butylamine ligand, Biochem. Pharmacol. 67, N6, 1097–1109 (2004).
81. H. Mansouri-Torshizi, M. I. Moghaddam, A. Divsalar and A. A. Saboury. Diimine platinum(II) and palladium(II) complexes of dithiocarbamate derivative as potential antitumor agents: synthesis, characterization, cytotoxicity, and detail DNA-binding studies, J. Biomol. Struct. Dyn. 26, N5, 575-586 (2009).
82. N. K. Kochetkov, E. I. Budowsky, E. D. Sverdlov, N. A. Simukova, M. F. Turchinsky and V. N. Shibaev, Organic Chemistry of Nucleic acids, Plenum Press, London, (1971).
83. D.Y. Lando, E. N. Galyuk, A. S. Fridman, Ye. B. Dalyan and I. E. Grigoryan. Kinetic studies of the influence of antitumor drug cisplatin on DNA renaturation, Dokl. Akad. Nauk Belar. 55, N6, 72-78 (2011).
84. D. Y. Lando, V. P. Egorova, V. I. Krot and A. A. Akhrem. Determination of protein contaminants in DNA preparations of high purity, Molec. Biol. 30, N3, 701-706 (1996).
85. T. Yotsuyanagi, M. Usami, Y. Noda and M. Nagata. Computational consideration of cisplatin hydrolysis and acid dissociation in aqueous media: effect of total drug concentrations, Int. J. Pharm. 246, N1-2, 95-104 (2002).
86. V. Kleinwachter and H. Rau. A study of DNA interaction with platinum cytostatics, Stud. Biophys. 103, N1, 5-12 (1984).
87. O. Vrana, V. Brabec and V. Kleinwachter. Polarographic studies on the conformation of some platinum complexes: relations to anti-tumour activity, Anti-Cancer Drug Des. 1, N2, 95-109 (1986).
88. O. Novakova, O. Vrana, V. I. Kiseleva and V. Brabec. DNA interactions of antitumor platinum(IV) complexes, Eur. J. Biochem. 228, N3, 616-624 (1995).
89. J. Volker, R. D. Blake, S. G. Delcourt and K. J. Breslauer. High-Resolution Calorimetric and Optical Melting Profiles of DNA Plasmids: Resolving Contributions from Intrinsic Melting Domains and Specifically Designed Inserts, Biopolymers 50, N3, 303–318 (1999).
90. O. Novakova, J. Malina, J. Kasparkova, A. Halamikova, V. Bernard, F. Intini, G. Natile and V. Brabec. Energetics, conformation, and recognition of DNA duplexes modified by methylated analogues of [PtCl(dien)]+, Chem. Eur. J. 15, N25, 6211-6221 (2009).
91. A. Kagemoto, Y. Takagi, K. Naruse and Y. Baba. Thermodynamic characterization of binding of DNA with cisplatin in aqueous solution by calorimetry, Thermochm. Acta 190, N2, 191-201 (1991) .
92. K. Nunomura, Y. Maeda and E. Ohtsubo. The interaction of platinum complexes with DNA studied by differential scanning calorimetry, J. Gen. Appl. Microbiol. 37, N2, 207-214 (1991).
93. G. S. Manning. The molecular theory of polyelectrolyte solutions with application of the electrostatic properties of polynucleotides, Q. Rev. Biophys. 11, N2, 179 –246 (1978).
94. J. Malina, J. Kasparkova, N. P. Farrell and V. Brabec. Walking of antitumor bifunctional trinuclear PtII complex on double-helical DNA, Nucleic Acids Res. 39, N2, 720-728 (2011).
95. M. S. Davies, S. J. Berners-Price and T. W. Hambley. Slowing of cisplatin aquation in the presence of DNA but not in the presence of phosphate: improved understanding of sequence selectivity and the roles of monoaquated and diaquated species in the binding of cisplatin to DNA, Inorg. Chemis. 39, N25, 5603-5613 (2000).
96. S. S. Yu, H. J. Li. Helix-coil transition and conformational studies of protamine-DNA complexes, Biopolymers 12, N12, 2777-2788 (1973).
97. H .J. Li, B. Brand, A. Rotter, C. Chang and M. Weiskopf. Helix-coil transition in nucleoprotein. Effect of ionic strength on thermal denaturation of polylysine-DNA complexes, Biopolymers 13, N8, 1681-1697 (1974).
98. D. Y. Lando, S. G. Haroutiunian, A. M. Kul’ba, E. B. Dalian, P.Orioli, S. Mangani and A. A. Akhrem. Theoretical and experimental study of DNA helix-coil transition in acidic and alkaline medium, J. Biomol. Struct. Dyn. 12, N2, 355-366 (1994) (and references therein).
99. D. Y. Lando, A. S. Fridman, V. I. Krot and A. A. Akhrem. Melting of cross-linked DNA: III. Calculation of Differential Melting Curves, J. Biomol. Struct. Dyn. 16, N1, 59-67 (1998).
100. C. -L. Chang, D. Y. Lando, A. S. Fridman and C. -K. Hu. Thermal Stability of DNA with Interstrand Crosslinks, Biopolymers 97, N11, 807-817 (2012).
101. K. Stehlikova, J. Kasparkova, O. Novakova, A. Martinez, V. Moreno and V. Brabec. Recognition of DNA modified by trans-[PtCl2NH3(4-hydroxymethylpyridine)] by tumor suppressor protein p53 and character of DNA adducts of this cytotoxic complex. FEBS J. 273, N2, 301-314 (2006).
102. V. Brabec, O. Vrana, O. Novakova, V. Kleinwächter, F. P. Intini, M. Coluccia and G. Natile. DNA adducts of antitumor trans-[PtCl2 (E-imino ether)2], Nucleic Acids Res. 24, N2, 336-341 (1996).
103. J. Kasparkova, V. Marini, Y. Najajreh, D. Gibson and V. Brabec. DNA Binding Mode of the Cis and Trans Geometries of New Antitumor Nonclassical Platinum Complexes Containing Piperidine, Piperazine, or 4-Picoline Ligand in Cell-Free Media. Relations to Their Activity in Cancer Cell Lines, Biochemistry 42, N20, 6321-6332 (2003).
104. S. S. Hah, K. M. Stivers, R. W. de Vere White and P. T. Henderson. Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry, Chem. Res. Toxicol. 19, N5, 622-626 (2006).
105. Y. S. Kim, S. Shin, M. Cheong and S. S. Hah. Mechanistic Insights into in vitro DNA Adduction of OxaliplatinB. Kor. Chem. Soc. 31, N7, 2043-2046 (2010).
106. S. S. Hah, R. A. Sumbad, R. W. de Vere White, K. W. Turteltaub and P. T. Henderson. Characterization of oxaliplatin-DNA adduct formation in DNA and differentiation of cancer cell drug sensitivity at microdose concentrations, Chem. Res. Toxicol. 20, N12, 1745-1751 (2007).
107. R. D. Blake and T.G. Hydorn. Spectral analysis for base composition of DNA undergoing melting. J. Biochem Biophys Methods. 11, N6, 307-316 (1985).
108. R. D. Blake and S. G. Delcourt. Electrostatic forces at helix-coil boundaries in DNA, Biopolymers 29, N2, 393-405 (1990).
109. P. O. Vardevanyan, A. T. Karapetyan, G. A. Terzikyan, R. R. Vardapetyan and E. A. Danielyan. Differential melting curves of DNA: Reliability of extrema, Biopolymers and Cell. 6, N4, 48– 51 (1990).
110. A. T. Karapetian, P. O. Vardevanian and M. D. Frank-Kamenetskii. Enthalpy of Helix-Coil Transition of DNA: Dependence on Na+ Concentration and GC-Content, J. Biomol. Struct. Dyn, 8, N1, 131-138 (1990).
111. R. D. Blake and S. G. Delcourt. Thermal stability of DNA, Nucleic Acids Research 26, N14, 3323–3332 (1998).
112. H. Uedaira, S.-i. Kidokoro, S. Ohgiya, K. Ishizaki and N. Shinriki. Thermal transition of plasmid pBR322 closed circular, open circular and linear DNAs, Thermochimica Acta 232, N1, 7-18 (1994).
113. R. D. Blake and S. G. Delcourt. Thermodynamic effects of formamide on DNA stability, Nucleic Acids Res 24, N11, 2095-2103 (1996).
114. R. R. Vardapeti(j)an, K. Letnansky, P. O. Vardevani(j)an and G. H. Panosi(j)an. Evaluation of nucleotide composition from melting curves, Biophys. Chem. 18, N1, 11-13 (1983).
115. D. Y. Lando and A. S. Fridman. Effect of ligands with selective type of binding on the DNA helix-coil transition, Mol. Biol. (Mosk). 21, N2, 330-337 (1987).
116. Y. L. Lyubchenko, M. D. Frank-Kamenetskii, A. V. Vologodskii, Y. S. Lazurkin and G. G. Gause. Jr Fine structure of DNA melting curves, Biopolymers 15, N6, 1019–1036 (1976).
117. W. Pakroppa and W. Müller . Fractionation of DNA on hydroxyapatite with a base-specific complexing agent, Proc Natl Acad Sci U S A 71, N3, 699-703 (1974).
118. A. Tikhomirova, I. V. Beletskaya and T. V. Chalikian. Stability of DNA Duplexes Containing GG, CC, AA, and TT Mismatches, Biochemistry, 45, N35, 10563-10571 (2006).
119. J. Petruska and M. F. Goodman Enthalpy-entropy compensation in DNA melting thermodynamics, J. Biol. Chem. 270, N2, 746-750 (1995).
120. E. B. Starikov and B. Nordén. Enthalpy−Entropy Compensation: A Phantom or Something Useful? J. Phys. Chem. B, 111, N51, 14431–14435 (2007).
指導教授 薛雅薇、胡進錕
(Ya-Wei Hsueh、Chin-Kun Hu)
審核日期 2013-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明