博碩士論文 100232013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.142.252.100
姓名 鍾發源(Fa-Yuan Chung)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 類磊晶薄膜成長與調控並利用於太陽能電池之研究
(The Growth and Modulation of Epitaxial Si Thin Films And The Application for Crystal Silicon Solar Cells)
相關論文
★ 矽基鍺薄膜光偵測器之研究★ 低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 矽晶太陽能電池的製作可運用很多方法,通常使用高溫擴散和離子佈植的方式摻雜使之成為一P-N接面,而在高溫擴散的方法必須使用高於900oC的溫度來活化摻雜物,所以這些製造技術需耗費很多的能量,本研究則是使用ECR-CVD製程機台,在製作太陽能電池技術方面,能以低溫成長(<200oC)矽薄膜之類磊晶摻雜層為優點,相對於高溫擴散的方法,減少了許多的熱損耗問題。
首先研究成長類磊晶摻雜矽薄膜方面,藉由改變ECR-CVD系統之微波功率、工作壓力、摻雜氣體混氣比與薄膜厚度之製程條件的改變,來探討成長類磊晶摻雜矽薄膜結構與電特性。研究發現能在低微波功率與高工作壓力下,可使矽薄膜在厚度7nm時摻雜濃度為1.6x1019 cm-3,其電阻率可達6.7x10-3 Ω-cm,且結晶率高達79%;另外隨著摻雜氣體混氣比的改變,並能調控其摻雜濃度的變化從2.2x1017~2.3x1020 cm-3。
而後以元件結構如下Ag/Ti/ITO/Si:H(p+)/ c-Si(n)/ Si:H (n+)/Ti/Ag製作太陽能電池,由於能夠在薄的厚度下摻雜出高的載子濃度與低的電阻率,這樣將會降低太陽光源於正面入射時的吸收,且由於如上述好的矽薄膜電特性,所以能降低其太陽能電池串聯電阻,並利用上述不同性質摻雜矽薄膜於矽晶太陽能電池上研究其光電轉換特性。我們藉由調變摻雜氣體混氣比、微波功率、及工作壓力之參數得到不同的摻雜濃度射極層,對應出當摻雜濃度>8x1019 cm-3時能使太陽能電池之開路電壓維持於560mV以上,及使其短路電流密度為35mA/cm2,所以本研究可在平面n-type FZ (100)矽晶基板上最佳太陽電池特性為:Voc=560.4mV、Jsc=37.69 mA/cm2、FF=73.3%,最後所得之效率在太陽源AM1.5於面積1 cm2為16.23%。
摘要(英) The production of silicon solar cells can use many methods, commonly used high-temperature diffusion and ion implantation to form a PN junction. The activation temperature of dopant is above 900oC for high-temperature diffusion and ion implantation methods, it will consume much energy of these manufacture technologies. In this thesis for the fabrication technology of c-Si solar cells, we can grow epitaxial-like silicon thin films with dopants at low temperatures (<200oC) by ECRCVD. It will diminish issues of energy consumption, as compared with the traditional high-temperature diffusion process.
For the study of epitaxial-like silicon thin films with dopants, we modulate the recipes of ECRCVD, such as microwave power, working pressure, dilution ratio of process gas, and thickness to investigate their structural and electronic characteristics. The thickness and crystalline fraction of the boron-doped thin films were measured by spectroscopic ellipsometry (SE), and their electrical properties such as mobility, concentration, and resistivity were measured by Hall effect measurement. Under the condition of low microwave power and high working pressure, the carrier concentration, and resistivity of a boron-doped epitaxial-like Si thin film with 7 nm thickness is 1.6x1019(cm-3), and 6.7x10-3(Ω-cm), the crystallinity is about 79%. Furthermore, we can control the carrier concentration varied between 2.2x1017 and 2.3x1020(cm-3) under the modulation of process gas dilution ratio.
The c-Si solar cell was fabricated with the structure : ITO / epi-Si:H (p+) / c-Si(n) / μc-Si:H (n+). Doped with a high carrier concentration and a low resistivity of the thin thickness that will reduce the solar light incident on the front of the absorption. The low electrical properties of silicon thin film solar cells can be reduced series resistance, and doped silicon thin films with different silicon solar cell research in the photoelectric conversion characteristics. We modulate the doping gas ratio, microwave power, and working pressure to obtain various carrier concentrations of emitter thin films. When the carrier concentration is above 8x1019 cm-3, the 560 mV of Voc and 35 mA/cm2 of Jsc can be achieved in the performance of solar cells.
Therefore, this study can be in the plane n-type FZ (100) silicon substrate optimum solar cell characteristics: Voc = 560.4mV, Jsc = 37.69 mA/cm2, FF = 73.3%, finally resulting in the efficiency of solar source AM1.5 in 1 cm2 area was 16.23%.
關鍵字(中) ★ 電子迴旋共振化學氣相沉積法
★ 低溫
★ 磊晶
★ 太陽能電池
★ 薄膜
關鍵字(英) ★ ECRCVD
★ low temperatures
★ epitaxial
★ solar cell
★ thin film
論文目次 目錄
第一章、 前言 1
1.1 研究背景 1
1.2 太陽能電池的發展 1
1.3 研究動機與目的 2
1.4 論文架構 5
第二章、 文獻回顧與原理介紹 6
2.1 磊晶成長機制 6
2.2 矽薄膜沉積原理 7
2.3 矽薄膜摻雜基本原理 8
2.4 太陽能電池工作原理 10
第三章、 製程設備與量測機台簡介 20
3.1 電子迴旋共振化學氣相沉積法製程設備簡介 20
3.1.1 電子迴旋共振化學氣相沉積之原理 21
3.1.2 反應氣體進氣系統 22
3.1.3 真空與加熱系統 23
3.2 太陽能電池後段製程機台介紹 24
3.2.1 離子濺鍍系統(Sputter) 24
3.2.2 電子槍蒸鍍系統(E-Gun) 24
3.2.3 快速熱退火爐(ARTs-RTA) 25
3.3 量測設備簡介 26
3.3.1 表面輪廓儀(Dektak) 26
3.3.2 橢圓儀偏振儀(Ellipsometer) 27
3.3.3 霍爾效應量測系統(Hall effect measument) 28
3.3.4 太陽光源模擬器(Solar Simulator) 30
3.3.5 光譜響應量子效率量測系統(IPCE) 31
第四章、 類磊晶摻雜之矽薄膜成長與特性分析 32
4.1 試片清洗流程 32
4.2 類磊晶薄膜成長流程 32
4.3 硼摻雜矽薄膜 33
4.3.1 微波功率對硼摻雜矽薄膜之影響 33
4.3.2 工作壓力對硼摻雜矽薄膜之影響 35
4.3.3 薄膜厚度對硼摻雜矽薄膜之影響 37
4.3.4 摻雜氣體流量對硼摻雜矽薄膜之影響 38
4.4 磷摻雜矽薄膜 40
4.4.1 摻雜氣體流量對磷摻雜矽薄膜之影響 40
4.4.2 薄膜厚度對磷摻雜矽薄膜之影響 41
第五章、 類磊晶矽薄膜太陽能電池之特性分析 42
5.1 類磊晶矽薄膜太陽能電池製作流程 42
5.2 射極層對太陽能電池之影響 44
5.2.1 微波功率對太陽能電池之影響 44
5.2.2 工作壓力對太陽能電池之影響 47
5.2.3 厚度對太陽能電池之影響 49
5.2.4 B2H6氣體流量對太陽能電池之影響 52
5.3 太陽能電池開路電壓與射極層濃度之關係 53
5.4 背表面電場層對接面太陽能電池之影響 55
5.4.1 PH3氣體流量對太陽能電池之影響 55
5.4.2 沉積背表面電場層厚度對太陽能電池之影響 56
5.5 太陽能電池之特性改善 58
5.5.1 金字塔結構利用於接面太陽能電池之影響 58
5.5.2 快速熱退火後改善太陽能電池 60
第六章、 結論 63
6.1 結論 63
6.2 未來展望 64
參考文獻 65
參考文獻 [1] 傳統能源之全球蘊藏量預估,經濟部能源局, (2010).
[2] Hassan El Gohary, "Development of Low-Temperature Epitaxial Silicon Films and Application to Solar Cells", (2010).
[3] Sanyo, "Sanyo Electrical Corporation", Japan, (2005).
[4] M. Labrune, M. Moreno, and P. R. I. Cabarrocas, "Ultra-shallow junctions formed by quasi-epitaxial growth of boron and phosphorous-doped silicon films at 175 degrees C by rf-PECVD", Thin Solid Films 518, 2528-2530 (2010).
[5] J.C.A. Huang, Ph.D. Thesis, Univ. of Illinois, (1992).
[6] B. Heinrich, J.A.C. Bland, "Ultrathin Magnetic Structure I", Springer-Verlag, New York , (1994).
[7] A. Matsuda and K. Tanaka, Thin Solar Film 92,171, (1982).
[8] A. Matsuda, in Conference Record of the 25th IEEE photovoltaic Specialist Conference (IEEE, New York, 1996) p.1029, (1996).
[9] R. Robertson, D. Hils, H. Chatham, A. Gallagher, "Radical species in argon‐silane discharges" Appl. Phys. Lett. 43(6), 544, (1983).
[10] 陳治明, 「非晶半導體材料與器件」, 科學出版社, (1991).
[11] Donald A. Neamen, "Semiconductor Physics and Devices", pp. 177~180, (2003).
[12] 黃惠良, 「太陽電池」, 五南出版社 (2008).
[13] N. Fujiwara, H. Sawai, M. Yoneda, K. Nishioka, K. Horie, K. Nakamoto, and H. Abe, "High-Performance Electron-Cyclotron Resonance Plasma-Etching with Control of Magnetic-Field Gradient," Jpn J Appl Phys 1 30, 3142-3146 (1991).
[14] S. Samukawa, and T. Nakamura, "Dependence of Electron-Cyclotron Resonance Plasma Characteristics on Magnetic-Field Profiles," Jpn J Appl Phys 2 30, L1330-L1332 (1991).
[15] D. H. Thang, H. Muta, and Y. Kawai, "Investigation of plasma parameters in 915 MHz ECR plasma with SiH4/H-2 mixtures," Thin Solid Films 516, 4452-4455 (2008).
[16] S.M.SZE, "Semiconductor Devices Physics and technology", pp. 55~56, (2001).
[17] Donald A. Neamen, "Semiconductor Physics and Devices", pp. 177~180, (2003).
[18] R. Shimokawa, M. Yamanaka, and I. Sakata, "Very low temperature epitaxial growth of silicon films for solar cells," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 7612-7618 (2007).
[19] J. K. Rath, and R. E. I. Schropp, "Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure," Sol Energ Mat Sol C 53, 189-203 (1998).
[20] R. Saleh, and N. H. Nickel, "Raman spectroscopy of B-doped microcrystalline silicon films," Thin Solid Films 427, 266-269 (2003).
[21] H. Fujiwara, and M. Kondo, "Effects of a-Si : H layer thicknesses on the performance of a-Si : H/c-Si heterojunction solar cells," J Appl Phys 101 (2007).
[22] M. Ichimura, M. Hirano, N. Kato, E. Arai, H. Takamatsu, and S. Sumie, "Control of surface recombination of Si wafers by an external electrode," Jpn J Appl Phys 2 38, L292-L294 (1999).
[23] S. R. Dhariwa, and Arun P. Kulshresht, "Theory of back surface field silicon solar cells", Solid-State Electronic Vol. 24, No. 12, (1981).
[24] O. V. Roos, "A simple theory of back surface field (BSF) solar cells" J. Appl. Phys. 49, 3503 , (1978).
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明