參考文獻 |
[1] S. Kaeriyama, Y. Amamiya, H. Noguchi, Z. Yamazaki, T. Yamase, K. Hosoya, M. Okamoto, S. Tomari, H. Yamaguchi, H. Shoda, H. Ikeda, S. Tanaka, T. Takahashi, R. Ohhira, A. Noda, K. Hijioka, A. Tanabe, S. Fujita, and N. Kawahara, “A 40 Gb/s multi-data-rate CMOS transmitter and receiver chipset with SFI-5 interface for optical transmission systems,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3568-3579, Dec. 2009.
[2] M. Yoneyama, Y. Miyamoto, T. Otsuji, H. Toba, Y. Yamane, T. Ishibashi, and H. Miyazawa, “Fully electrical 40-Gb/s TDM system prototype based on InP HEMT digital IC technologies,” J. Lightwave Tech., vol. 18, no. 1, pp. 1262-1268, Jan. 2000.
[3] S. Mohammadi, J.-W. Park, D. Pavlidis, J.-L. Guyaux, and J. C. Garcia, “Design optimization and characterization of high-gain GaInP/GaAs HBT distributed amplifiers for high-bit-rate telecommunication,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 6, pp. 1038-1044, June 2000.
[4] D. A. Hodges, “Darlington’s contributions to transistor circuit design,” IEEE Trans. Circuits and Syst. I, vol. 46, pp.102-104, Jan. 1999.
[5] K. W. Kobayashi, “Compact low voltage low noise amplifier,” U.S. Patent 7 619 482 B1, Nov. 17, 2009.
[6] IEEE Standard 802.16, Coexistence of Fixed Broadband Wireless Access Systems, July 2001.
[7] E. Cohen, C. G. Jakobson, S. Ravid, and D. Ritter, “A bidirectional TX/RX four-element phased array at 60 GHz with RF-IF conversion block in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1439-1446, May 2010.
[8] J. Kim, and J. F. Buckwalter, “A fully integrated Q-band bidirectional transceiver in 0.12-µm SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 2, pp. 57-60, Feb. 2012.
[9] K. W. Kobayashi, D. K. Umemoto, T. R. Block, A. K. Oki, and D. C. Streit, “A novel monolithic LNA integrating a common-source HEMT with an HBT Darlington amplifier,” IEEE Microw. Guided Wave Lett., vol. 5, pp. 442-444, Dec. 1995.
[10] J. Lee, and J. D. Cressler, “Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1262-1268, Mar. 2006.
[11] J.-S. Paek, B. Park, and S. Hong, “CMOS LNA with darlington-pair for UWB systems,” Electronics Letters, vol. 42, no. 16, pp.913-914, Aug. 2006.
[12] K. W. Kobayashi, R. Esfandiari, and A. K. Oki, “A novel HBT distributed amplifier design topology based on attenuation compensation techniques,” IEEE Trans. Microw. Theory Tech., vol.42, no.12, pp. 2583-2589, Dec. 1994.
[13] M.-D. Tsai, C.-S. Lin, C.-H. Lien, and H. Wang, “Broad-band MMICs based on modified loss-compensation method using 0.35-μm SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 23, no. 2, pp. 496-505, Feb. 2005.
[14] K. W. Kobayashi, YaoChung Chen, I. Smorchkova, R. Tsai, M. Wojtowicz, and A. Oki, “1-Watt conventional and cascoded GaN-SiC Darlington MMIC amplifiers to 18 GHz,” in IEEE RFIC Symp., Jun. 2007, pp. 585-588.
[15] K. W. Kobayashi, “Linearized Darlington cascode amplifier employing GaAs PHEMT and GaN HEMT technologies,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2116-2122, Oct. 2007.
[16] S.-H. Weng, H.-Y. Chang, and C.-C. Chiong, “A DC-21 GHz low imbalance active balun using Darlington cell technique for high apeed data communications,” IEEE Microw. Wireless Compon. Lett., vol.19, pp.728-730, Nov. 2009.
[17] J. Kim, and J. F. Buckwalter, “Staggered Gain for 100+ GHz Broadband Amplifiers,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1123-1136, May 20011.
[18] T.-K. Lee, W.-S. Chan, and Y.-M. Siu, “Darlington feedback amplifier with good bias stability under large-signal conditions,” Electronics Letters, vol. 40, no. 20, pp.1271-1272, Sept. 2004.
[19] H.-T. Chou, J. R. Liang, and H.-K. Chiou, “V-band low-power Darlington-pair gate-pumped mixer with thin-film LC-hybrid linear combiner in 90 nm CMOS,” Electronics Letters, vol. 48, no. 16, pp.1023-1024, Aug. 2012.
[20] K.-C. Lin, H.-K. Chiou, K.-H. Chien, T.-Y. Yang, P.-C. Wu, C.-L. Ko, and Y.-Z. Juang, “A 4.2-mW 6-dB gain 5–65-GHz gate-pumped down-conversion mixer using Darlington cell for 60-GHz CMOS receiver,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 4, pp. 1516-1522, Apr. 2013.
[21] H.-K. Chiou, I.-S. Chen, and W.-C. Chen, “High gain V-band active-integrated antenna transmitter using Darlington pair VCO in 0.13 m CMOS proces,” Electronics Letters, vol. 46, no. 5, pp.321-322, Mar. 2010.
[22] K. W. Kobayashi, R. Esfandiari, M. E. Hafizi, D. C. Streit, A. K. Oki, L. T. Tran, D. K. Umemoto, and M. E. Kim, “GaAs HBT wideband matrix distributed and Darlington feedback amplifiers to 24 GHz,” IEEE Trans. Microw. Theory Tech., vol.39, no. 12, pp. 2001-2009, Dec. 1991.
[23] K. W. Kobayashi, D. K. Umemoto, R. Esfandiari, A. K. Oki, L. M. Pawlowicz, M. E. Hafizi, L. Tran, J. B. Camou, K. S. Stolt, D. C. Streit, and M. E. Kim, “GaAs HBT MMIC broadband amplifiers from dc to 20 GHz,” in IEEE Microw. Millimeter-Wave Monolithic Circuits Symp., May 1990, pp. 19-22.
[24] K. W. Kobayashi, R. Esfandiari, A. K. Oki, D. K. Umemoto, J. B. Camou, and M. E. Kim, “GaAs heterojunction bipolar transistor MMIC dc to 10 GHz direct-coupled feedback amplifier,” in GaAs IC Symp., Oct. 1989, pp. 87-90.
[25] N. H. Sheng, W. J. Ho, N. L. Wang, R. L. Pierson, P. M. Asbeck, and W. L. Edwards, “A 30 GHz bandwidth AlGaAs-GaAs HBT direct-coupled feedback amplifier,” IEEE Microw. Guided Wave Lett., vol. 1, pp. 208-210, Aug. 1991.
[26] Y. Kuriyama, J. Akagi, T. Sugiyama, S. Hongo, K. Tsuda, N. Iizuka, and M. Obara, “DC to 40 GHz broad-band amplifiers using AlGaAs/GaAs HBT’s,” IEEE J. Solid-State Circuits, vol. 30, no. 10, pp.1051-1054, Oct. 1995.
[27] D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan, and M. J. W. Rodwell, “Transferred substrate HBT with 254 GHz fT,” Electron Letters, vol. 35, pp. 605-606, July 1999.
[28] D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan, and M. J. W. Rodwell, “Baseband amplifiers in transferred-substrate HBT technology,” in GaAs IC Symp., Oct. 1998, pp. 33-36.
[29] S.-H. Weng, H.-Y. Chang, and C.-C. Chiong, “Design of a 0.5-30 GHz Darlington amplifier for microwave broadband applications,” in IEEE MTT-S Int. Dig., Jun. 2010, pp. 1189-1192.
[30] C. T. Armijo, and R.G. Meyer, “A new wide-band Darlington amplifier,” IEEE J. Solid-State Circuits, vol. 24, pp. 1105-1109, Aug. 1989.
[31] C.-S. Lin, M.-D. Tsai, H. Wang, Y.-C. Wang, and C.-H. Chen, “A monolithic HBT broadband amplifier using modified triple Darlington configuration,” in Eur. Microw. Conf., Oct. 2004, pp. 331-334.
[32] S. B. Cohn, “A class of broadband three-port TEM-mode hybrids,” IEEE Trans. Microwave Theory Tech., vol. 19, no. 2, pp.110-116, Feb. 1968.
[33] N. Ehsan, K. Vanhille, S. Rondineau, E. D. Cullens, and Z. B. Popovic, “Broadband micro-coaxial Wilkinson dividers,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 11, pp. 2783-2789, Nov. 2009.
[34] M. Chongcheawchamnan, N. Siripon, and I. D. Robertson, “Design and performance of improved lumped-distributed Wilkinson divider topology,” Electron. Letters, vol. 37, pp. 501-503, Apr. 2001.
[35] M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 1, pp. 6-8, Jan. 2002.
[36] T. Tokumitsu, S. Hara, T. Tanaka, M. Aikawa, “Active isolator, combiner, divider, and magic-T as miniaturized function blocks,” in Gallium Arsenide Integrated Circuit symp., Nov. 1988, pp. 273-276.
[37] A. Noll, “A novel 8-way active splitter for broadband gateway applications,” in Asia-Pacific Microwave Conf., Dec. 2010, pp. 524-526.
[38] H. Kikuchi, Y. Miyagawa, and T. Kimura, “Broad-band GaAs monolithic equalizing amplifier for multigigabit-per-second optical receivers,” IEEE Trans. Microwave Theory Tech., vol. 38, no. 12, pp.1916-1923, Dec. 1990.
[39] J.-Y. Huang, H.-I Wu, R. Hu, C. F. Jou, D.-C. Niu, “A DC-20GHz CMOS active power divider design,” in Asia-Pacific Microwave Conf., Dec. 2010, pp. 524-526.
[40] G. S. Barta, K. E. Jones, G. C. Herrick, E. W. Strid, “Surface-mounted GaAs active splitter and attenuator MMIC’s used in a 1-10-GHz leveling loop,” IEEE Trans. Microwave Theory Tech., vol. 34, no. 12, pp.1569-1575, Dec. 1986.
[41] M. Alfredson, A. Ouacha, R. Jonsson, “Broadband bidirectional active MMIC power splitter and combiner for feed networks,” in Asia-Pacific Microwave Conf., Dec. 2001, pp.135-138.
[42] Yasushi Ito, “Distributed and lossy match active power splitters using bridged-T low-pass filter networks,” in IEEE MTT-S Int. Micro. Symp. Dig., June 2007, pp.1901-1904.
[43] W. K. Lo, W. S. Chan, “Broadband integrated active divider and combiner based on distributed amplification,” Electronics Letters, vol.44, pp.779-780, 2008.
[44] A. Safarian, and P. Heydari, “CMOS distributed active power combiners and splitters for multi-antenna UWB beamforming transceivers,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp.1481-1791, July 2007.
[45] H.-Y. Chang, Y.-C. Liu, S.-H. Weng, C.H. Lin, Y.-L. Yeh, and Y.-C. Wang, “Design and analysis of a DC-43.5-GHz fully integrated distributed amplifier using GaAs HEMT–HBT cascode gain stage,” IEEE Trans. Microwave Theory Tech., vol. 59, no. 2, pp.443-455, Feb. 2011.
[46] J. C. Park, J. Y. Park, H. S. Lee, “Fully embedded 2.4 GHz LC-balun into organic package substrate with series resonant tank circuit,” in IEEE MTT-S Int. Micro. Symp. Dig., June 2007, pp.1901-1904.
[47] C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design”, IEEE Trans. Microw. Theory and Tech., vol. 55, no.6, pp. 1190-1199, June 2007.
[48] T. Shibata, S. Kimura, H. Kimura, Y. Imai, Y. Umeda, Y. Akazawa, “A design technique for a 60 GHz-bandwidth distributed baseband amplifier IC module, “ IEEE J. Solid State Circuits, vol. 39, no. 12, pp. 1537-1544, Dec. 1994.
[49] M. E. Goldfarb, J. B. Cole, and A. Platzker, “A novel MMIC biphase modulator with variable gain using enhancement-mode FET’s suitable for 3 V wireless applications,” in IEEE Microw. Millimeter-Wave Monolithic Circuits Symp., Dig., May 1994, pp. 99-102.
[50] T. Hiraoka, T. Tokumitsu, M. Akaike, “A minaturized broad-band MMIC frequency doubler,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 12, pp. 1932-1937, Dec. 1990.
[51] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341-1350, Jun. 2008.
[52] J. Kim, and J. Silva-Martinez, “Wideband inductorless balun-LNA employing feedback for low-power low-voltage applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 9, pp. 1593-2842, Sept. 2012.
[53] H.-H. Chiang, F.-C. Huang, C.-S. Wang, and C.-K. Wang, “A 90 nm CMOS V-Band low-noise active balun with broadband phase-correction technique,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2583-2591, Nov. 2011.
[54] K. Jung, W. R. Eisenstadt, R. M. Fox, A. W. Ogden, and J. Yoon, “Broadband active balun using combined cascode-cascade configuration,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1790-1796, Aug. 2008.
[55] M. Kawashima, T. Nakagawa, K. Araki, “A novel broadband active balun”, in Eur. Microw. Conf., Oct. 2003, pp.495-498.
[56] T.-T. Hsu; C.-N. Kuo, “Low power 8-GHz ultra-wideband active balun”, in Silicon Monolithic Integrated Circuits in RF Systems Dig., pp.18-20, Jan. 2006.
[57] C. Viallon, D. Venturin, J. Graffeuil, T. Parra, “Design of an original K-band active balun with improved broadband balanced behavior,” IEEE Microw. Wireless Compon. Lett., vol.15, pp.280-282, April 2005.
[58] S.-Y. Lee, and C.-C. Lai, “A 1-V wideband low-power CMOS active differential power splitter for Wireless Communication,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1593-1600, Aug. 2007.
[59] D. H. Lee, J. Han, C Park, and S. Hong, “A CMOS active balun using bond wire inductors and a gain boosting technique,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp.676-678, Sept. 2007.
[60] B.-J. Huang, B.-J. Huang, K.-Y. Lin, and H. Wang, “A 2-40 GHz active balun using 0.13 m CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 164-166, Mar. 2009.
[61] A. Jahanian, and P. Heydari, “A CMOS distributed amplifier with distributed active input balun using GBW and linearity enhancing techniques,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1331-1341, May 2012.
[62] A. H. Baree, I. D. Robertson, “Monolithic MESFET distributed baluns based on the distributed amplifier gate-line termination technique,” IEEE Trans. Microw. Theory and Tech., vol. 45, no.2, pp.188-195, Feb. 1997.
[63] I. D. Robertson and A. H. Aghvami, “A novel wideband MMIC active balun,” in Eur. Microw. Conf., Oct. 1990, pp. 419-423.
[64] M. Ferndahl, H.-O. Vickes, “The matrix balun—a transistor-based module for broadband applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 53-60, Jan. 2009.
[65] Y. Park, C.-H. Lee, J. D. Cressler, J. Laskar, “Theoretical analysis of a low dispersion SiGe LNA for ultra-wideband applications,” IEEE Microw. Wireless Compon. Lett., vol.16, pp.517-519, Sept. 2006.
[66] S.-J. Chung, S.-M. Chen, and Y.-C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542-547, Feb. 2003.
[67] J. M. Yang, R. Lai, Y. H. Chung, M. Nishimoto, M. Battung, W. Lee, and R. Kagiwada, “Compact Ka-Band bi-directional amplifier for low-cost electronic scanning array antenna,” IEEE J. Solid-State Circuit, vol. 39, no. 10, pp. 1716-1719, Oct. 2004.
[68] J. W. Archer, O. Sevimli, and R. A. Batchelor, “Bi-directional amplifiers for half-duplex transceivers,” in GaAs IC Symp., Oct. 1999, pp.251-254.
[69] J. M. Yang, Y. H. Chung, M. Nishimoto, R. Lai, R. Tsai, R. Kagiwada, and C. C. Ymg, “High performance voltage controlled bi-directional amplifiers in support of component reuse for large aperture phase array,” in IEEE MTT-S Int. Micro. Symp. Dig., Jun. 2002, pp.65-68.
[70] M.-K. Cho, D. Baek, and J.-G. Kim, “Compact X-band CMOS bidirectional gain amplifier without T/R switches,” Electronics Letters, vol. 49, no. 1, pp.1271-1272, Jan. 2013.
[71] W. K. Lo, W. S. Chan, C. W. Li, and C. K. Leung, “Self-phase equalised bidirectional distributed amplifier,” Electronics Letters, vol.43, pp.626-627, May 2007.
[72] T. Tsukii, S. G. Houng, and M. J. Schindler, “Wideband bidirectional MMIC amplifiers for new generation T/R module,” in IEEE MTT-S Int. Micro. Symp. Dig., Jun. 1990, pp.907-910.
[73] N. P. Mehta, and P. N. Shastry, “Design guidelines for a novel bandpass distributed amplifier,” in Eur. Microw. Conf., Oct. 2005.
[74] S. L. G. Chu, M. J. Schindler, A. M. Bertrand, and T. Tsukii, “A novel broadband bidirectional matrix amplifier,” in GaAs IC Symp., Oct. 1991, pp.315-318.
[75] Z. El-Khatib, L. MacEachern, and S. A. Mahmoud, “Linearised bidirectional distributed amplifie with 20 dB IM3 distortion reduction,” Electronics Letters, vol.46, pp.1089-1090, Jul. 2010.
[76] P. Chen, P.-C. Huang, J.-J. Kuo, and H. Wang, “A 22-31 GHz distributed amplifier based on high-pass transmission lines using 0.18 m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 160-162, Mar. 2004.
[77] S. Sim, L. Jeon, and J.-G. Kim, “A compact X-band bi-directional phased-array T/R chipset in 0.13 m CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 496-505, Jan. 2013.
[78] J.-H. Tsai, and T.-W. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
[79] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1350-1360, May 2011.
[80] H.-Y. Chang, T.-W. Huang, H. Wang, Y.-C. Wang, P.-C. Chao, and C.-H. Chen, “Broad-band HBT BPSK and IQ modulator MMICs and millimeter-wave vector signal characterization,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 20-30, Mar. 2004.
[81] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J.G.J. Chern, “Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006.
[82] H.-Y. Chang, “Design of broadband highly linear IQ modulator using a 0.5 m E/D-PHEMT process for millimeter-wave applications,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 805-807, July 2008.
[83] H.-Y. Chang, S.-H. Weng, and C.-C. Chiong, “A 30–50 GHz Wide Modulation Bandwidth Bidirectional BPSK Demodulator/ Modulator With Low LO Power,” IEEE Microw. Wireless Compon. Lett., vol. 19, pp. 332-334, May 2008.
[84] S. Sarkar, D.A. Yeh, S. Pinel, and J. Laskar, “60-GHz direct-conversion gigabit modulator/demodulator on liquid-crystal polymer,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1245-1252, March 2006.
[85] S.-H. Weng, C.-H. Shen, and H.-Y. Chang, “A wide modulation bandwidth bidirectional IQ modulator/demodulator using 0.18 μm CMOS process for microwave and millimeter-wave gigabit applications,” in EuMIC, Oct. 2012, pp. 8-11.
[86] D. C. Streit, D. K. Umemoto, K. W. Kobayashi, and A. K. Oki, “Monolithic HEMT-HBT integration by selective MBE,” IEEE Trans. Elect. Dev., vol. 42, no. 4, pp. 618-623, Apr. 1995.
[87] K. W. Kobayashi, D. C. Streit, D. K. Umemoto, T. R. Block, and A. K. Oki, “A monolithic HEMT-HBT direct-coupled amplifier with active input matching,” IEEE Microw. Guided Wave Lett., vol. 6, pp. 55-57, Jan. 1996.
[88] S. Bousnina, P. Mandeville, A. B. Kouki, R. Surridge, and F. M. Ghannouchi, “Direct parameter-extraction method for HBT small-signal mode,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 529-536, Feb. 2002.
[89] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 7, pp. 1151-1159, July. 1988.
[90] Adel S. Sedra, and Kenneth C. Smith, Microelectronic Circuits, Oxford University Press, Inc., 2004, pp. 831-833.
[91] “Sonnet® User’s Guide,” 12th ed. Sonnet Software, Inc., North Syracuse, NY, 2009.
[92] H. Wang, R. Lai, L. Tran, J. Cowles, Y. C. Chen, E. W. Lin, H. H. Liao, M. K. Ke, T. Block, and H. C. Yen, “A single-chip 94 GHz frequency source using InP-based HEMT-HBT integration technology,” in IEEE RFIC Symp. Dig., June 1998, pp. 275-278.
[93] S. Kimura, Y. Imai, Y. Miyamoto, “Direct-coupled distributed baseband amplifier IC’s for 40-Gb/s optical communication,” IEEE J. Solid-State Circuits, vol. 31, no. 10, pp. 1374-1379, Oct. 1996.
[94] Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 2004, pp. 295-298.
[95] S.-H. Weng, H.-Y. Chang, C.-C. Chiong, and Y.-C. Wang, “Gain-bandwidth analysis of broadband Darlington amplifier in HBT-HEMT process,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 11, pp. 3458-3473, Nov. 2012.
[96] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter, “MESFET distributed amplifier design guidelines,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 3, pp. 268-275, Mar. 1984.
[97] D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998, ch. 7.
[98] J.-C. Chien, and L.-H. Lu, “40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-m CMOS,” IEEE J. Solid-State Circuit, vol. 42, no. 12, pp. 2715-2725, Dec. 2007. |