摘要(英) |
This thesis aims to search the optimized route planning for an autonomous line-tracking car using Genetic Algorithm (GA). By formulating the route planning question as a Travelling Salesman Problem (TSP), the GA has proved its effectiveness with high accuracy in achieving the multi-target route planning of the autonomous line-tracking car, in which the route planning requested each target should be passed through only one time and the line-tracking car should return to the initial target. Our study results have successfully implemented the route planning of the line-tracking car for 10 or more targets. The optimized route planning of the autonomous line-tracking car was computed on a PC platform. The optimized solutions obtained from GA were transmitted through a wireless transmission module to the autonomous line-tracking car. The utilized GA algorithm was designed to contain several steps, including the random initialization, crossover, mutation, elite policy, gene destruction, etc. Once the optimized route has been obtained, the optimized TSP solution is transferred to guide the autonomous line-tracking car. When the autonomous link-tracking car reached each designated target, the ID tag attached on the target was sensed by a RFID module, equipped on the autonomous line-tracking car and direct the line-tracking car toward next target. It has been shown that the present system can achieve 100% accuracy for 10 targets, with chromosome number of 200, maximum evolution of 5000, mutation and the crossover rates of 0.3 and 0.85, respectively.
In this thesis, the genetic algorithm successfully solved the traveling salesman problem and used it for planning the shortest path length of an autonomous line-tracking car. The study results may be helpful to the logistic transportation of automated guided vehicle in future applications. |
參考文獻 |
[1]Y. Takenaka and N. Funabiki, “An improved genetic algorithm using the convex hull for traveling salesman problem ”, IEEE International Conference on Systems, Man, and Cybernetics, Vol. 3, pp. 2279-2284, 1998.
[2]P. Larranaga, et al, “Genetic Algorithm for the Travelling Salesman Problem:A Review of Representations and Operators ”, Artificial Intelligence Review, Vol. 13, No. 2, pp. 129-170, 1999.
[3]S. S. Ray, S. Bandyopadhyay, and S. K. Pal, “New operators of genetic algorithms for traveling salesman problem ”, Proceedings of the 17th International Conference on Pattern Recognition, pp. 497-500, 2004.
[4]台灣大福(DAIFUKU)高科技設備股份有限公司,取自http://tw.taiwandaifuku.com/
[5]E. Horowitz, Fundamentals of Computer Algorithms, Misc, 1978.
[6]M. M. Flood, “The Travelling Salesman Problem ”, Operations Research, Vol. 4, No. 1, pp. 61-75, 1956.
[7]S. Tsubakitani and J. R. Evans, “Optimizing tabu list size for the traveling salesman problem ”, Computers & Operations Research, Vol. 25, No 2, pp. 91-97, 1998.
[8]S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by Simulated Annealing ”, Science, Vol. 220, No. 4598, pp. 671-680, 1983.
[9]M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem ”, IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53-66, 1997.
[10]J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press Cambridge, MA, USA 1992.
[11]J. Kennedy and R. Eberhart, “Particle Swarm Optimization ”, IEEE International Conference on Neural Networks, pp. 1942-1948, 1995.
[12]J. H. Holland, Adaptation in Natural and Articial Systems, University of Michigan Press, Ann Arbor, MI, USA, 1975.
[13]林昇甫、徐永吉,遺傳演算法及其應用,初版,五南圖書,台北市,民國九十八年。
[14]王正元,基于狀態轉移的組合優化方法,西安交通大學出版社,,西元2010年8月。
[15]V. Dwivedi, T. Chauhan, S. Saxena and P. Agrawal, “Travelling Salesman Problem using Genetic Algorithm ” International Journal of Computer Applications, pp. 25-30, 2012.
[16]K. Deep and H. Mebrahtu, “Combined Mutation Operators of Genetic Algorithm for the Travelling Salesman problem ”, International Journal of Combinatorial Optimization Problems and Informatics, Vol. 2, No. 3, 2011.
[17] C. Chudasama, S. M. Shah and M. Panchal, “Comparison of Parents Selection Methods of Genetic Algorithm for TSP ”, International Journal of Computer Applications, 2011.
[18]余家華,「由較佳邊集合引導之基因區域搜尋法及其應用於解旅行推銷員問題」,國立中興大學,碩士論文,民國96年。
[19]李維平、江正文、賀嘉生和李佩玲,「以混合基因與粒子群演算法求解旅行銷售員問題」,先進工程學刊,第五卷第四期,377~383頁,2010年10月。
[20]邱以強,「結合基因演算法與螞蟻演算法求解旅行推銷員問題」,國立東華大學,碩士論文,民國101年。
[21]許哲源,「自走車之驅動控制與避障規劃」,國立成功大學,碩士論文,民國92年。
[22]鄭永順,「輪型行動機器人之自動航行與路徑規劃」,國立中央大學,碩士論文,民國94年。
[23] 陳俊嘉,「即時影像追蹤之自走車設計」,國立中央大學,碩士論文,民國96年。
[24] 吳至仁,「利用環場視覺作自動車應用之定位與影像分析新技術之研究」,國立交通大學,博士論文,民國98年。
[25]李孟軒,「輪型機器人之路徑追蹤與避障」,國立中央大學,碩士論文,民國100年。
[26]陳承杰,「藉由粒子群演算法求解旅行銷售員問題於最佳化後勤補給規劃」,國立中央大學,碩士論文,民國101年。
[27]NI網站,LabVIEW 系統設計軟體,取自http://www.ni.com/labview/zht/
[28]曾百由,數位訊號控制器原理與應用,宏友圖書,民國九十八年。
[29]普特企業有限公司網站,Parallax標準伺服機,取自http://www.playrobot.com/cart/shop.php?id=296&factory=&header=&sub=&Fno=&date_buy
[30]東莞世安集團網站,伺服馬達的工作原理與內部結構圖,取自 http://www.gdshian.com/html/yingyonganli/201205/19-291.html
[31]Toymaker Television. Parallax RC Servo part 1:PWM/Hookup Basics. 取自http://tymkrs.tumblr.com/post/16823262200/parallax-rc-servo-part-i-pwm-hookup-basics
[32]普特企業有限公司網站,QTI循線模組,取自http://www.playrobot.com/cart/shop.php?id=12&factory=&header=&sub=&ctype2=&typeid=&pagename=&Fno=&date_buy
[33]劉穎昌:預測未來台灣RFID技術暨產業發展趨勢。2007年12月,取自http://www.gs1tw.org/twct/gs1w/pubfile/2007-12-p26-33.pdf
[34]H. Braun, “On Solving travelling salesman problems by genetic algorithms ”, Lecture Notes in computer Science, Vol. 496, pp 129-133, 1991.
[35]王文俊,認識Fuzzy,第三版,全華圖書,民國九十七年。
[36] 陳智綱,「含菁英政策與基因毀滅之基因演算法於主動式振動控制器之設計」,國立中山大學,碩士論文,民國89年。
[37]N. Kumar, Karambir and R. Kumar, “A Comparative Analysis of PMX, CX and OX Crossover operators for solving Travelling Salesman Problem ”, International Journal of Latest Research in Science and Technology, Vol 1, No. 2, pp. 98-101, July –August 2012.
[38]華儲物流設備有限公司,產品介紹:無人搬運車AM-AGV( Automation Guided Vehicle),取自http://www.axis-group.com.tw/ASHE/Index_AXIS.asp |