博碩士論文 955301030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.219.236.62
姓名 廖偉勛(Wei-Hsun Liao)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 應用於投射電容式觸控面板之良率增強技術
(Yield-Enhancement Techniques forProjected Capacitive Touch Panels)
相關論文
★ 應用於三元內容定址記憶體之低功率設計與測試技術★ 用於隨機存取記憶體的接線驗證演算法
★ 用於降低系統晶片內測試資料之基礎矽智產★ 內容定址記憶體之鄰近區域樣型敏感瑕疵測試演算法
★ 內嵌式記憶體中位址及資料匯流排之串音瑕疵測試★ 用於系統晶片中單埠與多埠記憶體之自我修復技術
★ 用於修復嵌入式記憶體之基礎矽智產★ 自我修復記憶體之備份分析評估與驗證平台
★ 使用雙倍疊乘累加命中線之低功率三元內容定址記憶體設計★ 可自我測試且具成本效益之記憶體式快速傅利葉轉換處理器設計
★ 低功率與可自我修復之三元內容定址記憶體設計★ 多核心系統晶片之診斷方法
★ 應用於網路晶片上隨機存取記憶體測試及修復之基礎矽智產★ 應用於貪睡靜態記憶體之有效診斷與修復技術
★ 應用於內嵌式記憶體之高效率診斷性資料壓縮與可測性方案★ 應用於隨機存取記憶體之有效良率及可靠度提升技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在觸控面板技術快速發展的現今,觸控面板線路的設計與製程技術,決定產品良率與生產成本的關鍵。本論文針對投射電容式觸控面板金屬導線的光罩設計與製程技術,提出補償設計與製程改善之方案。在論文第一部分,我們提出避免金屬導線被刮傷或斷線的PI(passivation insulator) Half-Tone光罩設計方案。利用調整光罩上遮光圖案的寬度與相對間距,讓曝光能量適當穿過光罩,使玻璃上所塗佈的光阻形成不同寬度與不同深度的PI溝渠圖形,經由光學顯微鏡的檢查挑選出符合金屬導線規格的PI溝渠圖形,使後續的製程將金屬導線埋藏其中,達到保護金屬導線的有效功能,大幅減少金屬導線因為刮傷所造成的功能性故障問題。在論文第二部分,我們提出金屬導線製程良率的改善方案。利用OPC (optical proximity correction)技術在金屬導線層光罩上補償金屬導線的CD(critical dimension)損失值。然後在利用過度曝光與過度顯影的製程將金屬導線觸控線路埋置於PI溝渠絕緣保護層中,減少因為製造過程中造成觸控面板金屬導線斷線與刮傷的良率損失。此項方法可以提升金屬導線的製程良率。使用此方法將可減少研發費用,並能使產品快速導入量產與節約成本。
摘要(英) With the rapid development of touch panel technology, the design and process technologies of touch panel circuitry have become the keys to production yield rate and manufacturing cost. In this thesis the plans for compensation design and process improvement have been proposed with respect to the photomask design and process technology of metal jumper wires of projected capacitive touch panel. A PI (passivation insulator) half-tone photomask design will be proposed in the first section to avoid scratched or broken metal jumper wires. The widths and pitches of photomask patterns will be adjusted to allow sufficient exposure light to penetrate through the photomask and to result in PI trenches with different widths and depths on the PI pattern. In the second section, a plan for improving the production yield rate of metal jumper wires will be proposed by incorporating OPC (optical proximity correction) on the metal jumper wire photomask to compensate the metal jumper wire CD (critical dimension) loss. Utilizing over-exposure and over-development fabrication processes, the conductive metal jumper wire can be embedded into the protective PI layers in order to reduce the loss of production yield rate due to wire scratch damage and breakage during the manufacturing process. With this method the production yield rate of the metal jumper wires can be improved, and the R&D costs can be reduced in order to achieve the rapid mass production and cost reduction of such product.
關鍵字(中) ★ 觸控面板 關鍵字(英)
論文目次 摘要 …………………………………………………………………………………i
Abstract …………………………………………………………………………ii
目錄 ………………………………………………………………………………iii
圖目錄 ……………………………………………………………………………vi
表目錄 ………………………………………………………………………………x
第一章 緒論…………………………………………………………………………1
1.1論文研究動機與目的 …………………………………………………………1
1.2 文獻回顧 … …………………………………………………………………1
1.2.1觸控面板技術介紹 …………………………………………………………1
1.2.2 觸控面板特性與功能 ……………………………………………………10
1.3 論文架構… …………………………………………………………………11
第二章 PI Half-Tone光罩與金屬導線OPC光罩設計方案 …………………12
2.1 傳統投射電容式觸控面板製程問題簡介 …………………………………12
2.2 PI Half-Tone光罩與金屬導線OPC光罩設計方法………………………14
2.2.1 PI Half-Tone測試光罩設計方法 ……………………………………15
2.2.2 金屬導線OPC測試光罩設計方法 ………………………………………17
2.3 使用PI Half-Tone光罩與金屬導線OPC光罩製造產品流程……………19
2.3.1 使用PI Half-Tone光罩製造產品流程 ………………………………19
2.3.2 使用金屬導線OPC光罩製造產品流程 …………………………………20
2.4 使用PI Half-Tone光罩與金屬導線OPC光罩製造產品實驗結果………22
第三章 應用統計方法分析PI Half-Tone光罩與金屬導線OPC光罩技術對傳統製程良率改善方案…………………………………………………………………24
3.1 過度曝光與過度顯影技術介紹 ……………………………………………24
3.1.1 光阻標準曝光圖形化製造流程 …………………………………………24
3.1.2 光阻過度曝光圖形化製造流程 …………………………………………25
3.2 統計方法分析傳統製程無金屬導線OPC光罩技術曝光與顯影數據………26
3.2.1 傳統製程無OPC技術標準曝光與標準顯影金屬導線數據分析…………27
3.2.2 傳統製程無OPC技術標準曝光與過度顯影金屬導線數據分析…………29
3.2.3 傳統製程無OPC技術過度曝光與標準顯影金屬導線數據分析…………30
3.2.4 傳統製程無OPC技術過度曝光與過度顯影金屬導線數據分析…………32
3.2.5 根據實驗結果以統計方法分析傳統製程無OPC技術金屬導線數據……32
3.3 統計方法分析金屬導線OPC光罩技術製程曝光與顯影數據………………33
3.3.1 OPC光罩技術標準曝光與標準顯影金屬導線數據分析 ………………34
3.3.2 OPC光罩技術標準曝光與過度顯影金屬導線數據分析 ………………36
3.3.3 OPC光罩技術過度曝光與標準顯影金屬導線數據分析 ………………37
3.3.4 OPC光罩技術過度曝光與過度顯影金屬導線數據分析 ………………39
3.3.5 根據實驗結果以統計方法分析OPC光罩技術製程金屬導線數據………41
3.4 根據實驗結果分析比較傳統製程與OPC光罩技術製程金屬導線數據……42
3.5 統計方法分析金屬導線OPC光罩技術製程過度曝光與過度顯影數據……43
3.5.1 製程最佳化驗證參數條件A ……………………………………………44
3.5.2 製程最佳化驗證參數條件B ……………………………………………46
3.5.3 製程最佳化驗證參數條件C ……………………………………………48
3.5.4 製程最佳化驗證參數條件D ……………………………………………50
3.6 根據實驗結果以統計方法分析比較傳統製程與製程最佳化條件數據 …51
第四章 結論與未來展望 …………………………………………………………57
參考文獻……………………………………………………………………………59
參考文獻 [1] S.-K. Choi and J.-I. Lee, “Effect of film density on
electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering,” J. Vac. Sci. Technol. A, Vol. 19, pp. 2043-2047, 2001.
[2] Z. Tsai, “Reliability and Stability in Electrical Properties of Ultra thin ITO for Touch Panel Application,” NCU Optical Science Research Institute of Electric thesis, July 2008.
[3] Groovy Technology Corp. http://www.gtouch.com.tw/products_panels.html.
[4] Groovy Technology Corp. http://www.gtouch.com.tw/products_panels_4w.html.
[5] Groovy Technology Corp. http://www.gtouch.com.tw/products_panels_5w.html.
[6] Groovy Technology Corp. http://www.gtouch.com.tw/products_panels_cap.html.
[7] Groovy Technology Corp. http://www.gtouch.com.tw/products_panels_pcap.html.
[8] Groovy Technology Corp. http://www.gtouch.com.tw/products_panels_saw.html.
[9] Groovy Technology Corp. http://www.gtouch.com.tw/products_panels_ir.html.
[10] Groovy Technology Corp. http://www.gtouch.com.tw/products_panels_ec.html.
[11] TPK Holding Corp., Ltd. http://www.eip.tpk-solutions.com/Pages/default.aspx
[12] TPK Holding Corp., Ltd., ”Product Introduction Touch Component Touch Solutions Touch System,” pp. 1-2, 2006.
[13] C. Nam, Y.-G. Pu, and K.-Y. Lee, “12x12 Capacitive Matrix Touch Sensing Unit for SoC Application in 0.18um CMOS process,” in Proc IEEE conference ISOCC 2009, Sept. 2009, pp. 307.
[14] J.-K. Wang, “Principles, Structures and Materials of Projected Capacitive Touch Panels,” The Journal of Industrial Materials no.282, pp. 158, June 2010.
[15] JTOUCH Corp., “Technology and Manufacture Projected Capacitive Type,” pp. 1-2, 2008.
[16] G-TECH Optoelectronics Corp., “Products Introduction Touch Panel ITO Glass,” pp. 1-2, 2011.
[17] Young Fast Optoelectronics Corp., “Production & Services,” pp. 1-2, 2009.
[18] S. Hotellinf, “Multipoint Touch Screen,” U.S. Patent, No. 0097991, 2006.
[19] X.-L. Wu, B.-W. Lee, C.-Y. Joung, and S. Jang, ” Touchware: a software based implementation for high resolution multi-touch Applications,” 2010 10th IEEE International Conference on Computer and Information Technology(CIT 2010), pp. 1705-1709.
[20] J.-Y. Ruan, P.-C.-P. Chao, and W.-D. Chen, “A Multi-Touch Interface Circuit for a Large-Sized Capacitive Touch Panel,” in Proc. IEEE Sensors Conference, Oct. 2010, pp. 309-311.
[21] T.-H. Hwang, W.-H. Cui, and I.-S. Yang, “A Highly Area-Efficient Controller for Capacitive Touch Screen Panel Systems, “in Proc. IEEE Sensors, Oct. 2010, pp. 1116.
[22] H.-R. Kim and Y.-K. Choi, Samsung Electronics, Yongin, Korea, “A Mobile Display Driver IC Embedding a Capacitive Touch Screen Controller System,” 2010 IEEE International Solid-State Circuits Conference, ISSCC 2010/Session 6/Displays & Biomedical Devices/6.1 Digest Of Technical, February 8, 2010, pp. 115.
[23] I.-S.Yang and O.-K. Kwon, ”A Touch Controller Using Differential Sensing Method for On-Cell Capacitive Touch Screen Panel Systems,” IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, August 2011, pp. 1027-1028.
[24] S.-H. Ko and H.-H. Shin, “Low Noise Capacitive Sensor for Multi touch Mobile handset’s applications,” IEEE Asian Solid-State Circuits Conference/Beijing China, 8 November 2010, pp. 3-4.
[25] P. Buck, K. Nakagawa, and F. Kalk, Toppan Photomasks Inc., ” Mask Error Enhancement Factor,” pp. 1-4, 2 January 2008.
[26] C.-W. Lai, ”Computer Aided Design of Electrode Pattern in Capacitive Touch Panel,” NCKU Department of Aerospace Engineering thesis pp.8-18, March 1996.
[27] K. Lee, “Improvement of defect density for DUV halftone PSM,” Photomask and next generation lithography mask technology VII, Proceedings of SPIE Vol. 4066, pp. 112- 123, 2000.
[28] S. Nagashige, ”Detection and repair of multiphase defects on alternating phase shift masks for DUV lithography,” 19th Annual BACUS Symposium on Photomask Technology. Monterey, California, SPIE Vol. 3873. pp. 201 – 213, Sep. 1999.
[29] T. Yamauchi, “Quality assurance and yield improvement Photomask fabrication,” Photomask and next generation lithography mask technology VII, Proceedings of SPIE Vol. 4066, pp. 34- 35, 2000.
[30] F. Matsuo, “Pattern shape analysis tool for defect judgment of photomask,” Photomask and next generation lithography mask technology VII, Proceedings of SPIE Vol. 4066, pp. 68- 82, 2000.
[31] Marc D. Levenson, “What is a phase-shifting mask?,” SPIE Vol. 1496 10th Annual Symposium on Microlithography, 1990.
[32] ASML Corp., Ltd. http://www.asml.com/asml/show.do?ctx=427.
[33] T. Terasawa, "Subwavelength lithography (PSM, OPC)," Design Automation Conference, 2000. Proceedings of the ASP-DAC 2000. Asia and South Pacific, pp. 295-300, 2000.
[34] S. Sasaki, “Development of photomask process with precise CD control, and an approach for DFM (Defect free manufacturing) using a cluster tool, ” Photomask and next-generation lithography mask technology VII, Proceedings of SPIE Vol. 4066, pp. 168 – 174, 2000.
[35] P. Gupta, A.-B. Kahng, S. Muddu, S. Nakagawa, and C.-H. Park, “Modeling OPC complexity for design for manufacturability”, Proc. SPIE Vol.5992, pp. 612-622, 25th Annual BACUS Symposium on Photomask Technology; J. Tracy Weed, Patrick M. Martin; Eds, Nov. 2005.
[36] E. Sugiura, H. Watanabe, T. Imoriya, and Y. Todokoro, “Fabrication and pattern transfer of optical proximity correction(OPC) mask”, SPIE Vol. 2254 Photomask and X-Ray Mask Technology, pp. 183-192, 1994.
[37] ITRS Lithography, 2006.
[38] S. Bisset, “Touch Pad Driven Handhedl Computing Device,” U.S. Patent, No. 5543588 6, 1996.
[39] H. Kikuchi, “Touch Panel,” U.S. Patent, No. 4990900, 1991.
[40] S. Kurashima, “Touch Panel Having 30 To 45 Degree Angel Between Direction Of Display Unit Elements And Direction Of Input Unit Elements,” U.S. Patent, No. 5715024, 1998.
[41] L.-L. Fan, ” Layout method of bridging electrode,” U.S. Patent, No. 8252151, 2012.
[42] 鄭博彬 益震科技,”觸控面板之結構,”中華民國專利公報證書號數:M328033, pp. 6215-6221, 27 Aug. 2007.
[43] 林正峰 凌巨科技,”電容式觸控面板,”中華民國專利公報證書數:M338404, pp. 5473-5476, 28 Dec. 2007.
[44] 林冠穎 達虹科技,”電容式觸控面板之感測結構及觸控面板,”中華民國專利公報證書號數: M344522, pp. 5463-5468, 18 May 2008.
[45] 丁智勇 達虹科技,”觸控面板之感測結構,” 中華民國專利公報證書號數: M34454425, pp. 5587-5596, Dec. 2007.
[46] 莊文儒 達虹科技,”具預定感測區之電容式觸控面板感測結構,”中華民國專利公報證書號數:M352088, pp. 7461-7464, 12 Aug. 2008.
[47] 林怡誠 盛群半導體,”一種低寄生電容的電容觸控板,”中華民國專利公報證書號數:M352084, pp. 5587-5596, 24 Oct. 2008.
[48] 張勝裕 全台晶像,”具無效電極補償之觸控面板透明導電膜,”中華民國專利公報證書號數:M355395, pp. 4671-4676, 29 Oct. 2008.
[49] 龔敬華 全台晶像,”電容式觸控面板,”中華民國專利公報證書號數:M355426, pp. 4847-4850, 18 Nov. 2008.
[50] 盧鐘雄 宸鴻光電,”電容式觸控面板之觸控圖型結構,”中華民國專利公報證書號數:M200842681, pp. 19-22, 27 April 2007.
[51] J.-J. Lyu and M.-N. Chen, ”A Six Sigma Program for Touch Panel Quality Improvement,” Quality Management and Business Excellence, Vol.15, no.4, pp. 271-281, 2008.
[52] L. Grant, “Statistical Quality Control,” 6th edition.
指導教授 李進福(Jin-Fu Li) 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明