博碩士論文 100521041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.138.37.43
姓名 簡潔(Chieh Chien)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 600-V 溝渠式絕緣閘雙極性電晶體設計、分析與短路能力探討
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文首先針對封裝完成之額定電壓/電流為600 V/30 A與導通電壓為1.88 V之絕緣閘雙極性電晶體IGBT:Insulated Gate Bipolar Transistor進行設計、製作流程模擬與測量結果分析,再針對縮小元件面積改善邊緣終端區(edge termination)之設計進行研究。最佳化邊緣終端區設計寬度為200 μm且崩潰電壓可達到1200 V以上,藉由改變保護環(guard ring)之濃度可將崩潰電壓調整至額定電壓600 V以配合主動區(active area)之設計。
利用Silvaco公司之Athena和Atlas軟體進行元件製程模擬和電性分析後,加上電路架構進一步探討IGBT短路操作能力(short-circuit capability)。論文中提出場終止型(Field-stop) IGBT之N-緩衝層以遞減摻雜劑量方式作背部摻雜,可有效改善元件短路能力且對元件之基本特性影響不大。最後針對IGBT在變頻器電路(inverter)應用,將隔離電路、閘極驅動電路和六顆IGBT設計在變頻器驅動板中來驅動壓縮機馬達,並配合最佳控制策略完成直流變頻冷氣驅動系統。本論文詳細介紹系統中反相驅動板之設計與操作方法,並將封裝後之IGBT放入此板中做測試。
摘要(英) This research demonstrated the design, analysis, simulation, and characterization of a packaged IGBT (Insulated Gate Bipolar Transistor) with the rated voltage/current of 600 V/30 A and on-state voltage of 1.88 V. Moreover, the edge termination was designed to minimize the chip size. The minimum size of designed termination is 200 μm and the measured breakdown voltage is up to 1250 V. For 600 V application the active area of the edge termination can be achieved by changing the guard ring implantation dosage.
Silvaco TCAD simulators (Athena and Atlas) are used to design and simulate the IGBT process and electrical characteristics. After that IGBT is coupled with the circuit architecture to investigate the short-circuit capability. This thesis proposed the field-stop IGBT by decreasing N-buffer dosage gradually from backside implantation, which can significantly improve the device short-circuit capability without acutely affecting the dc characteristics. Finally, an IGBT inverter board including the isolation circuit, gate drive circuit and six packaged IGBTs is demonstrate to evaluate the packaged IGBTs The IGBT inverter board is designed to drive the compressor and combine with the optimized control strategy for DC inverter air conditioner drive system.
關鍵字(中) ★ 絕緣閘雙極性電晶體
★ 短路能力
★ 邊緣終端區
★ IGBT反相驅動電路
關鍵字(英) ★ Insulated Gate Bipolar Transistor
★ Short-circuit capability
★ Termination
★ IGBT Inverter Board
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究動機與背景 1
1.2 論文架構 3
第二章 IGBT技術發展 4
2.1 前言 4
2.2 功率元件之比較 4
2.3 IGBT等效電路 6
2.4 IGBT操作原理與特性 7
2.4.1 導通特性(On-state Characteristics) 8
2.4.2 耐壓特性(Blocking Characteristics) 8
2.4.3 電流飽和模型(Current Saturation Model) 9
2.4.4 動態特性(Dynamic Characteristics) 11
2.4.4.1 開關特性(Switching Characteristics) 11
2.4.4.2 短路能力(Short-circuit Capability) 13
2.5 IGBT表面閘極結構發展 13
2.5.1 平面式(Planar) IGBT 13
2.5.2 溝渠式(Trench) IGBT 14
2.6 IGBT背部集極端結構發展 15
2.6.1 穿透型(Punch-Through, PT) IGBT 15
2.6.2 非穿透型(Non-Punch Through, NPT) IGBT 17
2.6.3 場終止型(Field Stop, FS) IGBT 19
2.7 IGBT相關技術發展 21
2.7.1 增強型注入絕緣閘雙極性電晶體(IEGT) 21
2.7.2 載子儲存溝渠式閘極雙極性電晶體(CSTBT) 22
2.7.3 溝渠式場終止型絕緣閘雙極性電晶體(Trenchstop IGBT) 23
2.7.4 雙閘極之溝渠式絕緣閘雙極性電晶體(DG-TIGBT) 23
2.8 結論 24
第三章 600 V溝渠式IGBT模擬、分析與製作 25
3.1 前言 25
3.2 元件設計目標 25
3.3 IGBT設計與分析 25
3.3.1 穿透型溝渠式IGBT靜態特性模擬 25
3.3.2 穿透型溝渠式IGBT動態特性模擬 29
3.3.3 IGBT電子束幅射前後特性比較 30
3.3.4 IGBT測量結果 31
3.4 邊緣終端區(Edge Termination)設計與分析 32
3.4.1 邊緣終端區之設計 32
3.4.2 邊緣終端區之製作流程 36
3.4.3 邊緣終端區之參數設計與測量特性 37
3.4.4 最佳化之最小面積邊緣終端區設計 39
3.5 結論 41
第四章 IGBT短路能力探討 42
4.1 前言 42
4.2 電路架構與問題成因 42
4.3 理論推導 44
4.4 短路能力模擬探討 46
4.4.1 以模擬角度探討物理機制 51
4.4.2 改變元件外部測試條件 52
4.4.2.1 改變短路能力測試時間 52
4.4.2.2 改變短路測試電路中接線電感值 53
4.4.3 改變元件注入效率 55
4.4.3.1 改變P+集極端摻雜濃度 55
4.4.3.2 改變N-緩衝層摻雜濃度 59
4.4.3.3 改變N-緩衝層摻雜能量 63
4.5 結論 70
第五章 600 V/30 A IGBT反相驅動電路應用 71
5.1 前言 71
5.2 IGBT反相驅動電路板設計 71
5.3 系統架構與操作原理 72
5.4 操作結果 76
5.5 結論 79
第六章 總結 80
參考文獻 81
參考文獻 [1] C.-K. Liu, Y.-L. Chao, J.-C. Chang, W. Li, C.-M. Tzeng, R.-C. Fang, K.-S. Kao, T.-C. Chang, C.-S. Chen, W.-C. Lo, “IGBT power module packaging for EV applications,” Int. Conf. Electron. Mater. Packag., pp. 1-4, Dec. 2012.
[2] B.-Y. Ku and J.-S. Liu, “Converter-switching surges: railroad vehicle power converter impact studies,” IEEE Veh. Technol. Mag., pp. 57-66, Sept. 2012.
[3] S.-Y. Tseng, S. Peng, Y. Chuang, C. Tsai, “Multi-switch driving circuit with LLC resonant circuit for high pulsed-voltage generator,” IEEE 9th Int. Conf. Power Electron. Drive Syst., pp. 803-808, Dec. 2011.
[4] K.-W. Chu, W.-S. Lee; C.-Y. Cheng; C.-F. Huang ; F. Zhao; L.-S. Lee; Y.-S. Chen; C.-Y. Lee; M.-J. Tsai, “Demonstration of Lateral IGBTs in 4H-SiC,” IEEE Electron Device Lett., pp. 286-288, Feb. 2013.
[5] R. Y. Su, C. C. Cheng, K. H. Huo, F. J. Yang, J. L. Tsai, R. S. Liou, H. C. Tuan, “Design of 700 V LIGBT with the suppressed substrate current in a 0.5 μm junction isolated technology,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 221-224, Jun. 2012.
[6] B. J. Baliga, M. S. Adler, P. V. Gray, R. P. Love and N. Zommer, “The insulated gate rectifier (IGR): a new power switching device,” in Proc. IEEE Int. Electron Devices Meeting, pp. 264-267, 1982.
[7] K. S. Oh, “Application Note 9016: IGBT Basic 1,” Fairchild Semiconductor, Feb. 2001.
[8] B. J. Baliga, Fundamentals of Power Semiconductor Devices. Springer, pp. 816-819, 2008.
[9] H. R. Chang, B. J. Baliga., J. W. Kretchmer and P. A. Piacente, “Insulated gate bipolar transistor (IGBT) with a trench gate structure,” IEEE Int. Electron Devices Meeting, pp. 674-677, 1987.
[10] E. R. Motto, J. F. Donlon, H. Takahashi, M. Tabata and H. Iwamoto, “Characteristics of a 1200 V PT IGBT with trench gate and local life time control,” Ind. Appl. Conf., pp. 811-816, Oct. 1998.
[11] H. Ruething, F. Umbach, O. Hellmund, P. Kanschat and G. Schmidt, “600V-IGBT3: trench field stop technology in 70 μm ultra thin wafer technology,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 211-214, Jun. 2004.
[12] 林毓誠, “600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計,” 國立中央大學電機工程學系碩士論文, 2011
[13] M. Kitagawa, I. Omura, S. Hasegawa, T. Inoue and A. Nakagawa, “A 4500V injection enhanced insulated gate bipolar transistor (IEGT) in a mode similar to a thyristor,” IEEE Int. Electron Devices Meeting, pp. 679-682, Dec. 1993.
[14] H. Takahashi, E. Haruguchi, H. Hagino and T. Yamada, “Carrier stored trench-gate bipolar transistor (CSTBT)-A novel power device for high voltage application,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 349-352, May 1996.
[15] W. C.-W. Hsu, F. Udrea, H.-T. Chen and W.-C. Lin, “A novel double-gate Trench Insulated Gate Bipolar transistor with ultra-low on-state voltage,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 291-294 , Jun. 2009.
[16] B. J. Baliga, Fundamentals of Power Semiconductor Devices. Springer, pp. 120-134, 2008.
[17] C. Ronsisvalle and V. Enea, “Improvement of high-voltage junction termination extension (JTE) by an optimized profile of lateral doping (VLD),” Microelectron. Reliab., pp. 1773-1777, Aug. 2010.
[18] Infineon Application Notes, “Short Circuit Behaviour of IGBT³ 600 V,” Infineon Technol., 2005.
[19] M. Otsuki, Y. Onozawa, H. Kanemaru, Y. Seki and T. Matsumoto, “A study on the short-circuit capability of field-stop IGBTs,” IEEE Trans. on Electron Devices, pp.1525-1531, Jun. 2003.
[20] T. Wikstrom, F. Bauer, S. Linder and W. Fichtner, “Experimental study on plasma engineering in 6500V IGBTs,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 37-40, May 2000.
[21] J. Yamashita, A. Uenishi, Y. Tomomatsu, H. Haraguchi, H. Takahashi, I. Takata, and H. Hagino, “A study on the short-circuit destruction of IGBTs,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 35-40, May 1993.
[22] J. Yamashita, E. Haruguchi and H. Hagino, “A study on the IGBT turn-off failure and inhomogeneous operation,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 45-50, Jun. 1994.
[23] B. J. Baliga, Fundamentals of Power Semiconductor Devices. Springer, pp. 1005-1006, 2008.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明