博碩士論文 965401018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.147.43.219
姓名 葉佳龍(Chia-Lung Yeh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 實用穩態視覺誘發電位腦機介面之設計
(Design of Practical Steady-state Visual Evoked Potential-based Brain Computer)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 腦機介面為癱瘓患者與外在環境溝通的新興技術,近幾年所發展之各式腦機介面中,穩態視覺誘發電位腦機介面因具有使用者只需簡易訓練、較佳的資訊轉換率與準確率以及低成本等特性,成為發展的重點,然而為了達到穩態視覺誘發電位較高之訊雜比,基於其振幅與頻率的特性採用視覺誘發電位閃光頻率常低於20赫茲。但是若閃光閃爍頻率低於臨界閃光頻率,反而易造成使用者視覺上的不適;此外腦電波訊號為生理狀態(例如:情緒、專注力…等)神經活動的電生理反應,所以每個人所測得腦電波是有差異的,因此需要發展一個有效的分類方法改善相關問題。本篇論文將針對上述兩個問題提出改善方法:(1)設計高工作週期的視覺誘發電位閃光頻率去減少使用者視覺上的不適,在實驗設計中,使用13.16赫茲閃光頻率的發光二極體,其每一週期(T)為76毫秒(包含了亮狀態TON與暗狀態TOFF,且T = TON + TOFF),工作週期定義為TON/T,並測試不同工作週期(從10.5% 到89.5%)之穩態視覺誘發電位與採用問卷方式去調查使用者對閃光的舒適度,由六位受測者實機控制滑鼠得到高資訊轉換率(25.08位元/分)的實驗結果可歸納89.5% 工作週期的閃光頻率對使用者具有較高舒適性亦可適用於相位編碼的穩態視覺誘發電位腦機介面。(2)設計以支持向量機為基礎的分類方法進行相位編碼穩態視覺誘發電位腦機介面之目標偵測去改善使用者之間腦電波訊號差異所造成誤判問題,首先在分類器的訓練階段,每一使用者以離線紀錄所獲得穩態視覺誘發電位的振幅與相位去訓練支持向量機分類器,隨後應用於實機應用測試上,其方法首先以Kolmogorov-Smirnov(K-S)測試穩態視覺誘發電位的相位分布是否為有效資料,若判定為無效則再加入下一個狀態的相位,直到確定為有效資料,然後將有效資料所包含的相位與其對應的振幅當作分類器的輸入用以目標偵測,實機測試所得結果的準確性高達89.88 ± 4.76 %,反應時間為1.13 ± 0.02秒與較佳的資訊轉換率(50.91 ± 8.70位元/分),可顯著改善目標偵測的準確性。
摘要(英) Brain computer interface (BCI) is an emerging technology for paralyzed patients to communicate with external environments. Among current BCIs, the steady-state visual evoked potential (SSVEP)-based BCI has drawn great attention due to its characteristics of easy preparation, high information transfer rate (ITR), high accuracy, and low cost. Due to the amplitude-frequency characteristic of SSVEP, the flickering frequency of an SSVEP-based BCI is typically lower than 20 Hz to achieve high signal-to-noise ratio (SNR). However, a visual flicker with a flashing frequency below the critical flicker-fusion frequency often makes subjects feel flicker jerky, and causes visual discomfort. In addition, electroencephalogram (EEG) signals are electrophysiological responses reflecting the underlying neural activities which are dependent upon subject’s physiological states (e.g., emotion, attention, etc.) and usually variant among different individuals. The development of classification approaches to account for each individual’s difference in SSVEP is needed but was seldom reported. To overcome the above two problems, hence, the dissertation is divided into two studies. In the first study, we present a novel technique using high duty-cycle visual flicker to decrease user’s visual discomfort. The proposed design uses light emitting diodes (LEDs) flashing at 13.16 Hz, driven by flickering sequences consisting of repetitive stimulus cycles with a duration of T (T = 76 ms). Each stimulus cycle included an ON state with a duration TON and an OFF state with a duration TOFF (T = TON + TOFF), and the duty cycle, defined as TON/T, varied from 10.5% to 89.5%. This study also includes a questionnaire survey, and analyzes the SSVEPs induced by different duty-cycle flickers. An 89.5% duty-cycle flicker, reported as a comfortable flicker, was adopted in a phase-tagged SSVEP system. Six subjects were asked to sequentially input a sequence of cursor commands with 25.08 bits/min ITR. In the second study, a multiclass support vector machine (SVM)-based classification approach is proposed for gaze-target detections in a phase-tagged SSVEP-based BCI. In the training steps, the amplitude and phase features of SSVEP from off-line recordings were used to train a multiclass SVM for each subject. In the on-line application study, effective epochs which contained sufficient SSVEP information of gaze targets were first determined using Kolmogorov-Smirnov (K-S) test, and the amplitude and phase features of effective epochs were subsequently inputted to the multiclass SVM to recognize user’s gaze targets. The on-line performance using the proposed approach has achieved high accuracy (89.88 ± 4.76 %), fast responding time (effective epoch length = 1.13 ± 0.02 s), and the ITR was 50.91 ± 8.70 bits/min. The multiclass SVM-based classification approach has been successfully implemented to improve the classification accuracy in a phase-tagged SSVEP-based BCI. The present study has shown the multiclass SVM can be effectively adapted to each subject’s SSVEPs to discriminate SSVEP phase information from gazing at different gazed targets.
關鍵字(中) ★ 腦機介面
★ 穩態視覺誘發電位
★ 腦電波
★ 支持向量機
關鍵字(英) ★ Brain computer interface (BCI)
★ electroencephalography (EEG)
★ steady-state visual evoked potential (SSVEP)
★ support vector machine
論文目次 摘要 I
Abstract II
誌謝 IV
Content V
List of Figures VIII
List of Tables X
List of Abbreviations XI
Chapter 1 Introduction 1
1.1 Review of Previous Work and Motivation 1
1.2 Motivation 2
1.3 Objectives of Dissertation 4
1.4 Organization of Dissertation 5
Chapter 2 Brain Rhythms and Visual Evoked Potentials 7
2.1 The Electrical Activities of the Cerebral Cortex 7
2.2 Human Brain Rhythms 7
2.3 Measurements 8
2.4 Cerebral Cortex Evoked Potentials 11
2.5 The Challenge of Visual Evoked Potential 12
Chapter 3 Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition (EMD) 17
3.1 Motivation and Main Tasks 17
3.2 Background 18
3.3 EMD-based Method 21
3.3.1 Subjects and Experiments 21
3.3.2 Data Analysis 22
3.4 Results and Discussion 32
3.5 Summary 38
Chapter 4 An SSVEP – Based BCI Using High Duty-Cycle Visual Flicker 41
4.1 The Design of Visual Stimulation 41
4.2 Questionnaire Survey 44
4.3 EEG Recordings and Tasks 45
4.4 Signal Processing in the Flicker Investigation Study 46
4.5 Results 50
4.5.1 Questionnaire Survey 50
4.5.2 SSVEPs in the Flicker Investigation Study 52
4.6 Discussion and Summary 55
Chapter 5 Improvement of Classification Accuracy in a Phase-tagged SSVEP-based BCI Using Multiclass SVM 60
5.1 EEG Preparation and Subjects 60
5.2 System Architecture and Visual Stimulus 61
5.3 Experimental Tasks 64
5.4 SSVEP Signal Processing 65
5.5 Gazed-target detections in the BCI Application Study 70
5.6 Designing a SVM-based Approach 72
5.7 Conclusion and Summary 78
Chapter 6 Conclusion and Future Works 82
6.1 Conclusion 82
6.2 Future Works 83
Reference 86
Publication List 102
Appendix A 103
參考文獻 [1] N. Weiskopf, K. Mathiak, S. W. Bock, F. Scharnowski, R. Veit, W. Grodd, R. Goebel and N. Birbaumer, “Principles of a Brain-Computer Interface (BCI) Based on Real-Time Functional Magnetic Resonance Imaging (fMRI),” IEEE Trans. Biomed. Eng., vol. 51, pp. 966-970, 2004.
[2] R. Sitaram, A. Caria and N. Birbaumer, “Hemodynamic brain–computer interfaces for communication and rehabilitation,” Neural Networks, vol. 22, pp. 1320-1328, 2009.
[3] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson and T. M. Vaughan, “Brain-computer interface technology: A review of the first international meeting,” IEEE Trans. Rehab. Eng., vol. 8, pp. 164-176, 2000.
[4] S. Parini, L. Maggi, A. C. Turconi and G. Andreoni, “A robust and self-paced BCI system based on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-rate direct brain communication,” Comput. Intell. Neurosci., vol. 2009, pp. 1-11, 2009.
[5] D. Zhu, G. Molina, V. Mihajlovic and R. Aarts, “Phase synchrony analysis for SSVEP-based BCIs,” Proc. 2nd Int. Conf. Comput. Eng. Technol., vol. 2, pp. 329-333, 2010.
[6] C.S. Herrmann, “Human EEG responses to 1-100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena,” Exp. Brain Res., vol. 137, pp. 346-353, 2001.
[7] M. A. Pastor, J. Artieda, J. Arbizu, M. Valencia and J, C. Masdeu, “Human cerebral activation during steady-state visual-evoked responses,” J. Neurosci., vol. 23, pp. 11621-11627, 2003.
[8] F. B. Vialatte, M. Maurice, J. Dauwels and A. Cichocki, “Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives,” Prog. Neurobiol., vol. 90, pp. 418-438, 2010.
[9] P. L. Lee, J. J. Sie, Y. J. Liu, M. H. Lee, C. H. Shu, P. H. Li C. W. Sun and K. K. Shyu, “An SSVEP-Actuated Brain Computer Interface Using Phase-Tagged Flickering Sequences: A Cursor System,” Ann. Biome. Eng., vol. 38, pp. 2383-2397, 2010.
[10] M. Cheng, X. Gao and Gao S, “Design and implementation of a brain-computer interface with high transfer rate.” IEEE Trans. Biomed. Eng., vol. 49, pp. 1181-1186, 2002.
[11] Y. Wang, R. Wang, X. Gao, B. Hong and S. Gao, “A practical VEP-based brain-computer interface,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 14, pp. 234-239, 2006.
[12] Z. Wu and D. Yao, “Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs,” J. Neural Eng., vol. 5, pp. 36-43, 2008.
[13] A. Keil, T. Gruber, M. M. Muller, S. Moratti, M. Stolarova, M. M. Bradley and P. J. Lang, “Early modulation of visual perception by emotional arousal: evidence from steady-state visual evoked brain potentials,” Cogn Affect Behav Neurosci, vol. 3, pp. 195-206, 2003.
[14] R. B. Silberstein, J. Ciorciari and A. Pipingas, “Steady-state visually evoked potential topography during the Wisconsin card sorting test,” Electroenceph. clin. Neurophysiol., vol. 96, pp. 24-35, 1995.
[15] R. B. Silberstein, P. L. Nunez, A. Pipingas, P. Harris and F. Danieli, “Steady state visually evoked potential (SSVEP) topography in a graded working memory task,” International J. of Psychophysiology, vol. 42, pp. 219-232, 2001.
[16] J. Ding, G. Sperling and R. Srinivasan, “Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency,” Cereb. Cortex, vol. 16, pp.1016-1029, 2006.
[17] J. C. Thompson, K. Tzambazis, C. Stough, K. Nagata and R. B. Silberstein, “The effects of nicotine on the 13 Hz steady-state visually evoked potential,” Clinical Neurophysiology, vol. 111, pp. 1589-1595, 2000.
[18] C. H. Wu, H. C. Chang, P. L. Lee, K. S. Li, J. J. Sie, C. W. Sun, C. Y. Yang, P. H. Li, H. T. Deng and Kuo-Kai Shyu, “Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing,” J. of Neurosci. Methods, vol. 196, pp. 170–181, 2011.
[19] G.R Muller-Putz and G.Pfurtscheller, “Control of an Electrical Prosdissertation with an SSVEP-Based BCI,” IEEE Trans. Biomed. Eng., vol. 55, pp. 361-364, 2008.
[20] H. Gollee, I. Volosyak, A. J. McLachlan, K. J. Hunt and A. Graser, “An SSVEP-based brain–computer interface for the control of functional electrical stimulation,” IEEE Trans. Biomed. Eng., vol. 57, pp. 1847-1855, 2010.
[21] C. Jia, X. Gao, B. Hong and S. Gao, “Frequency and Phase Mixed Coding in SSVEP-Based Brain--Computer Interface,” IEEE Trans. Biomed. Eng., vol. 58, pp. 200-206, 2011.
[22] S. G. Ramos-Junior, D. R. Celino, F. F. Rodor, M. R. N. Ribeiro, S. M. T. Muller, T. F. B. Filho and M. S. Filho, “Experimental evidences for visual evoked potentials with stimuli beyond the conscious perception threshold,” in Biosignals and Biorobotics Conf. (BRC), Vitoria, Brazil, pp.1-5, 2011.
[23] Y. Galifret, “Visual peresitence and cinema?,” Comptes rendus biologies, vol. 329, pp. 369-385, 2006.
[24] J. Brozek and A. Keys, “Changes in flicker-fusion frequency with age,” J. of Consulting Psychology, vol. 9, pp. 87-90, 1945.
[25] M. Maier, T. Groneberg, H. Specht and C. P. Lohmann, “Critical flicker-fusion frequency in age-related macular degeneration,” Graefes Arch. Clin. Exp. Ophthalmol., vol. 248, pp. 409-413, 2010.
[26] K. K. Shyu, Y. J. Chiu, P. L. Lee, M. H. Lee, J. J. Sie, C. H. Wu, Y. T. Wu and P. C. Tung, “Total Design of an FPGA-Based Brain Computer Interface Control Hospital Bed Nursing System,” IEEE Trans. Industrial Electronics (in press).
[27] H. C. Chang, P. L. Lee, M. T. Lo, I. H. Lee, T. K. Yeh and C. Y. Chang, “Independence of Amplitude-Frequency and Phase Calibrations in an SSVEP-Based BCI Using Stepping Delay Flickering Sequences,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, pp. 305-312, 2012.
[28] J. R. Wolpaw, “Brain-Computer Interfaces Principles and Practice,” Edited by Wolpaw EW, USA: Oxford University Press, pp. 165-187, 2012.
[29] M. A. Lopez-Gordo, A. Prieto, F. Pelayo and C. Morillas, “Use of phase in brain-computer interfaces based on steady-state visual evoked potentials,” Neural Processing Lett., vol. 32, pp. 1-9, 2010.
[30] C. M. Wong, B. Wang, F. Wan, P. U. Mak, P. I. Mak and M. I. Vai, “An improved phase-tagged stimuli generation method in steady-state visual evoked potential based brain-computer interface,” Proc. 3rd Int. Conf. Biomed. Eng. Informat., vol. 2, pp. 745-749, 2010.
[31] H. Bakardjian, T. Tanaka and A. Cichocki, “Emotional faces boost up steady-state visual responses for brain-computer interface,” Neuroreport, vol. 22, pp. 121-125, 2011.
[32] S. T. Morgan, J. C. Hansen and S. A. Hillyard, “Selective attention to stimulus location modulates the steady-state visual evoked potential,” Proc. Nat. Acad. Sci. USA, vol. 93, pp. 4770-4774, 1996.
[33] M. Gray, A. H. Kemp, R. J. Silberstein and P. J. Nathan, “Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT),” NeuroImage, vol. 20, pp. 975-986, 2003.
[34] B. Boser, I. Guyon and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” Proc. 5th Annu. Workshop Comput. Learn. Theory, pp. 144-152, 1992.
[35] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, pp. 273-297, 1995.
[36] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola and V. Vapnik, “Support vector regression machines,” In: Advances in Neural Information Processing Systems. Edited by M. Mozer, M. Jordan, T. Petsche, Eds. Cambridge, MA: MIT Press, vol. 9, pp. 155–161, 1997.
[37] V. Vapnik, “Statistical learning theory,” New York: Wiley 1998
[38] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition.” Data Mining and Knowledge Discovery, vol. 2, pp. 121-167, 1998.
[39] V. Banlz, B. Schölkopf, H. H. Bülthoff, C. Burges, V. Vapnik and T. Vetter, “Comparison of view based object recognition algorithms using realistic 3D models,” Proc. ICANN, Edited by C. Malsburg, W. Seelen, J. C. Vorbrüggen, Sendhoff B. Eds., Berlin, Germany, pp. 251-256, 1996.
[40] M. Schmidt, “Identifying speaker with support vector networks,” Proc. Interface, Sydney, Australia, 1996.
[41] T. Joachims, “Text categorization with support vector machines, Technical report,” University of Dortmund, 1997, Available: ftp://ftp-ai.informatik.uni-dortmund.de/pub/Reports/report23.ps.Z.
[42] E. L. Allwein, R. E. Schapire and Y. Singer, “Reducing multiclass to binary: a unifying approach for margin classifiers” J. Machine Learning Research, vol. 1, pp. 113-141, 2000.
[43] X. Wang and K. K. Paliwal, “Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition,” Pattern Recognition, vol. 36, pp. 2129-2139, 2003.
[44] R. Rifkin and A. Klautau, “In defence of one-vs-all classification,” J. Machine Learning Research, vol. 5, pp. 101-141, 2004.
[45] S. Liu, H. Yi, L. T. Chia and D. Rajan, “Adaptive hierarchical multiclass SVM classifier for texture-based image classification,” Pro. of ICME, pp. 1190-1193, 2005.
[46] L. F. Haas, “Hans Berger (1873-1941), Richard Caton (1842-1926) and electroencephalography,". Journal of Neurology, Neurosurgery & Psychiatry, vol.74, pp.9, 2003.
[47] 台北榮民總醫院教學研究部整合性腦功能實驗室, Available: http://ibru.vghtpe.gov.tw/chinese/bci.htm
[48] The International 10-20 System, Available: http://www.brainmaster.com/ generalinfo/ electrodeuse/eegbands/1020/1020.html
[49] J. Malmivuo and R. Plonsey, "Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields," Oxford University Press, USA, 1995.
[50] E. Sutter, "The brain response interface: communication through visually-induced electrical brain responses," J. Microcomput. Appl., vol. 15, pp. 31-45, 1992.
[51] L. Aurira, R. A. Moro, "Support Vector Machines (SVM) as a Technique for Solvency Analysis," German Institutefor Economic Research DIW Berlin, Discussion Paper 811, 2008.
[52] O. Jensen, S. Vanni, “A new method to identify multiple sources of oscillatory activity from magnetoencephalographic data,” NeuroImage, vol. 15, pp. 568-574, 2002.
[53] R. Salmelin, M. Hamalainen, M. Kajola, R. Hari, “Functional segregation of movement-related rhythmic activity in the human brain,” Neuroimage, vol. 2, pp. 237-243, 1995.
[54] G. Pfurtscheller, C. Neuper, D. Flotzinger, M. Pregenzer, “EEG-based discrimination between imagination of right and left hand movement,” Electroencephalogr. Clin. Neurophysiol., vol. 103, pp. 642-651, 1997.
[55] G. Pfurtscheller, K. Pichler-Zalaudek, B. Ortmayr, J. Diez, F. Reisecker, “Postmovement beta synchronization in patients with Parkinson’s disease,” J. Clin. Neurophysiol., vol. 15, pp. 243-250, 1998.
[56] G. Pfurtscheller, K. Zalaudek, C. Neuper, “Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr,” Clin. Neurophysiol., vol. 109, pp. 154-160, 1998.
[57] G. Pfurtscheller, F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clin. Neurophysiol., vol. 110, pp. 1842-1857, 1999.
[58] T. Silen, N. Forss, O. Jensen, R. Hari, “Abnormal Reactivity of the ~20-Hz Motor Cortex Rhythm in Unverricht Lundborg Type Progressive Myoclonus Epilepsy,” Neuroimage, vol. 12, pp. 707-712, 2000.
[59] J. Rosell, R. Casanas, H. Scharfetter, “Sensitivity maps and system requirements for magnetic induction tomography using a plannar gradiometer,” Physiol. Meas., vol. 22, pp. 121-130, 2001.
[60] P. J. Durka, “From wavelets to adaptive approximations: time-frequency parametrization of EEG,” BioMedical Engineering OnLine, vol. 2, pp1-18, 2003.
[61] C. I. Hung, P. L. Lee, Y. T. Wu, L. F. Chen, T. C. Yeh, J. C. Hsieh, “Recognition of motor imagery electroencephalography using independent component analysis and machine classifiers,” Ann. Biomed. Eng., vol. 33, pp. 1053-1070, 2005.
[62] H. K. Gomarus, M. Althaus, A. A. Wijers, R. B. Minderaa, “The effects of memory load and stimulus relevance on the EEG during a visual selective memory search task: an ERP and ERD/ERS study,” Clin. Neurophysiol., vol.117, pp. 871-884, 2006.
[63] J. L. Bosboom, D. Stoffers, C. J. Stam, B. W. van Dijk, H. W. Berendse, E. C. H. Wolters, “Resting state oscillatory brain dynamics in Parkinson’s disease: an MEG study,” Clin. Neurophysiol., vol. 117, pp. 2521-2531, 2006.
[64] Z. J. Wang, P. W. H. Lee, M. J. McKeown, “A Novel Segmentation, Mutual Information Network Framework for EEG Analysis of Motor Tasks,” BioMedical Engineering OnLine, vol. 8, pp.9-28, 2009.
[65] G. Pfurtscheller, J. A. Stancak, C. Neuper, “Post-movement beta synchronization. A correlate of an idling motor area?,” Electroencephalogr. Clin. Neurophysiol., vol. 98, pp. 281-293, 1996.
[66] G. Pfurtscheller, C. Neuper, A. Schlogl, K. Lugger, “Separability of EEG Signals Recorded During Right and Left Motor Imagery Using Adaptive Autoregressive Parameters,” IEEE transactions on Rehabilitation Engineering, vol. 6, pp. 316-325, 1998.
[67] G. Pfurtscheller, F. H. Lopes da Silva, “Event-related desynchronization. In: Handbook of Electroencephalography and Clinical Neurophysiology,” Edited by G. Pfurtscheller, F. H. Lopes da Silva. Eds. Amsterdam, Elsevier Science, pp. 303-325, 1999.
[68] P. Clochon, J. M. Fontbonne, N. Lebrun, P. Etevenon, “A new method for quantifying EEG event-related desynchronization: amplitude envelope analysis,” Electroencephalogr. Clin. Neuro-Physiol., vol. 98, pp. 126–129, 1996.
[69] W. Klimesch, H. Russegger, M. Doppelmayr, T. Pachinger, “A method for the calculation of induced band power: implications for the significance of brain oscillation,” Electroencephalogr. Clin. Neurophysiol., vol. 108, pp. 123-130, 1998.
[70] G. Florian, G. Pfurtscheller, “Dynamic spectral analysis of event-related EEG data,” Electroencephalogr. Clin. Neurophysiol., vol. 95, pp. 393-396, 1995.
[71] R. Salmelin, R. Hari, “Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement,” Neuroscience, vol. 60, pp. 537-550, 1994.
[72] P. L. Lee, Y. T. Wu, L. F. Chen, Y. S. Chen, C. M. Cheng, T. C. Yeh, L. T. Ho, M. S. Chang, J. C. Hsieh, “ICA-based spatiotemporal approach for single-trial analysis of post-movement MEG beta synchronization,” Neuroimage, vol. 20, pp. 2010-2030, 2003.
[73] G. Pfurtscheller, C. Brunner, A. Schlogl, F. H. Lopes da Silva, “Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks,” Neuroimage, vol. 31, pp. 153-159, 2006.
[74] A. Schlogl, “The electroencephalogram and the adaptive autoregressive model: theory and applications,” Shaker Verlag, Aachen, 2000.
[75] C. H. Wu, P. L. Lee, Y. T. Wu, J. C. Hsieh, “ICA-based analysis of movement-related modulation on beta activity of single-trial MEG measurement using spatial and temporal templates,” J. of Medical and Biological Eng., vol. 28, pp. 155-159, 2008.
[76] L. Qin, B. He, “A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications,” J. Neural Eng., vol.2, pp. 65-72, 2005.
[77] D. S. Dinner, H. Luders, R. P. Lesser, H. H. Morris, “Cortical generators of somatosensory evoked potentials to median nerve stimulation,” Neurology, vol. 37, pp. 1141–1145, 1987.
[78] J. C. Echevarria, J. A. Crowe, M. S. Woolfson, B. R. Hayes-Gill, “Application of empirical mode decomposition to heart rate variability analysis,” Med. Biol. Eng. Comput., vol. 39, pp. 471–479, 2001.
[79] N .E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, H. H. Liu, “The empirical mode decomposition and the Hilbert Spectrum for nonlinear and nonstationary time series analysis,” Proc. Roy. Soci. London Ser., vol. A, pp. 903-995, 1998.
[80] W. Huang, Z. Shen, N. E. Huang, Y. C. Fung, “Engineering analysis of biological variables: An example of blood pressure over 1 day,” Proc. Natl. Acad. Sci. USA., vol. 95, pp. 4816–4821, 1998.
[81] W. Huang, Z. Shen, N. E. Huang, Y. C. Fung, “Nonlinear indicial response of complex nonstationary oscillations as pulmonary hypertension responding to step hypoxia,” Proc. Natl. Acad. Sci. USA., vol. 96, pp. 1834–1839, 1999.
[82] J. A. Hartigan, M. A. Wong, “A K-Means Clustering Algorithm,” Appl. Statist., vol. 28, pp. 100–108, 1979.
[83] G. Pfurtscheller, A. Berghold, “Patterns of cortical activation during planning of voluntary movement Electroencephalogr,” Clin. Neurophysiol., vol. 72, pp. 250–258, 1989.
[84] T. D. Lagerlund, F. W. Sharbrough, C. R. Jack, B. J. Erickson, D. C. Strelow, K. M. Cicora, N. E. Busacker, “Determination of 10-20 system electrode locations using magnetic resonance image scanning with markers,” Electroencephalogr. Clin. Neurophysiol., vol. 86, pp. 7-14, 1993.
[85] G. Pfurtscheller, A. Aranibar, “Event-related cortical desynchronization detected by power measurements of scalp EEG,” Electroencephalogr. Clin. Neurophysiol., vol. 42, pp. 817-826, 1997.
[86] L. Leocani, C. Toro, P. Manganotti, P. Zhuang, M. Hallett M, “ Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements,” Electroencephalogr. Clin. Neurophysiol., vol. 104, pp. 199-206, 1997.
[87] J. B. Earle, “Task difficulty and EEG alpha asymmetry: an amplitude and frequency analysis,” Neuropsychobiology, vol. 20, pp. 95-112, 1998.
[88] R. E. Hoffman, M. S. Buchsbaum, M. D. Escobar, R. W. Makuch, K. H. Nuechterlein and S. M. Guich, “EEG coherence of prefrontal areas in normal and schizophrenic males during perceptual activation,” J. Neuropsychiatry and Clin. Neurosciences, vol. 3, pp. 169-175, 1991.
[89] H. Yabe, F. Satio and Y. Fukushima, “Median method for detecting endogenous event-related brain potentials,” Electroencephalography and Clin. Neurophysiol., vol. 87, pp. 403-407, 1993.
[90] A. R. Haig, E. Gordon, G. Rogers and J. Anderson, “Classification of single-trial ERP sub-types: application of globally optimal vector quantization using simulated annealing,” Electroencephalography and Clin. Neurophysiol., vol. 94, pp. 288-297, 1995.
[91] M. C. M. Bastiaansen, K. B. E. Bocker, P. J. M. Cluitmans and C. H. M. Brunia, “Event-related desynchronization related to the anticipation of a stimulus providing knowledge of results,” Clin. Neurophysiol., vol. 110, pp. 250-260, 1999.
[92] M. C. M. Bastiaansen, K. B. E. Bocker and C. H. M. Brunia, “Event-related desynchronization during anticipatory attention for an upcoming stimulus: a comparative EEG/MEG study,” Clin. Neurophysiol., vol. 112, pp. 393-403, 2001.
[93] N. E. Huang, M. L. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, K. L. Fan, “A confidence limit for the Empirical Mode Decomposition and Hilbert spectral analysis,” Proc. Roy. Soci. London Ser., vol. A459, pp. 2317-2345, 2003.
[94] R. Balocchi, D. Menicucci, E. Santarcangelo, L. Sebastiani, A. Gemignani, B. Ghelarducci, M. Varanini, “Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition,” Chaos, Solitons & Fractals, vol. 20, pp. 171–177, 2004.
[95] X. Li, J. C. R. Jefferys, J. Fox, X. Yao, “Neuronal population oscillations of rat hippocampus during epileptic seizures,” Neural Networks, vol. 21, pp. 1105-1111, 2008.
[96] X. Li, D. Li, Z. Liang, L. J. Voss, J. W. Sleigh, “Analysis of depth of anesthesia with Hilbert-Huang spectral entropy,” Clin. Neurophysiol., vol. 119, pp. 2465-2475, 2008.
[97] A. Stancak, B. Feige, C. H. Lucking, R. Kristeva-Feige, “Oscillatory cortical activity and movement-related potentials in proximal and distal movements,” Clin. Neurophysiol., vol. 111, pp. 636-650, 2000.
[98] C. Babiloni, A. Brancucci, F. Babiloni, P. Capotosto, F. Carducci, F. Cincotti, L. Arendt-Nielsen, A. C. Chen, P. M. Rossini, “Ancipatory cortical responses during the expectancy of a predictable painful stimulation. A high-resolution Electroencephalogrpahy study,” Eur. J. Neurosci., vol. 18, pp. 1692-1700, 2003.
[99] W. Gaetz, D. Cheyne, “Localization of sensorimotor cortical rhythms induced by tactile stimulation using spatially filtered MEG,” NeuroImage, vol. 30, pp. 899-908, 2006.
[100] M. L. Stavrinou, L. Moraru, L. Cimponeriu, S. Della Penna, A. Bezerianos, “Evaluation of cortical connectivity during real and imagined rhythmic finger tapping,” Brain Topogr., vol. 19, pp. 137-145, 2007.
[101] J. Muller-Gerking, G. Pfurtscheller, H. Flyvbjerg, “Designing Optimal spatial filters for single-trial EEG classification in a movement task,” Clin. Neurophysiol., vol. 110, pp. 787-798, 1999.
[102] C. Babiloni, F. Babiloni, F. Carducci, F. Cincotti, G. De Pino, C. Del Percio, S. Maestrini, A. Priori, P. Tisei, O. Zanetti, P. M. Rossini, “Movement-related in electroencephalographic reactivity in alzheimer disease,” NeuroImage, vol. 12, pp. 139-146, 2000.
[103] R. Spehlmann, “Evoked potential primer,” Boston, America: Butterworth Press, 1985.
[104] A. Schloegl, J. Kronegg, J. E. Huggins and S. G. Mason, “Evaluation criteria for BCI research,” in Toward Brain-Computer Interfacing, G. Dornhege, J. Millan, T. Hinterberger, D. J. McFarland, K. Müller, Eds. Cambridge, MA: MIT Press, pp. 327-342, 2007.
[105] J. R. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clin. Neurophysiol., vol. 113, pp. 767-791, 2002.
[106] S. P. Kelly, E. C. Lalor, R. B. Reilly and J. J. Foxe, “Visual spatial attention tracking using high density SSVEP data for independent brain–computer communication,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 13, pp. 172–178, 2005.
[107] M. Coltheart, “persistences of vision,” Philos. Trans. R. Soc., vol. 290, pp. 57-69, 2008.
[108] V. D. Lollo, “Temporal Integration in visual memory,” J. of Experimental Psychology, vol. 109, no. 1, pp75-97, 1980.
[109] B. Treutwein and I. Rentschler, “Double pulse resolution in the visual field: The influence of temporal stimulus characteristics,” Clinical Vision Sciences, vol. 7, pp. 421-434, 1992.
[110] Y. J. Kim, M. Grabowecky K. A. Paller and S. Suzuki, “Harmonic components of SSVEPs simultaneously generate both broad bilateral and focal contralateral responses,” J. of Vision, vol. 6, pp. 535a, 2006.
[111] A. M. Bloch, “Experience sur la vision,” C. R. Seances Soc. Bio., Paris 37, pp. 493-495, 1985.
[112] S. L. Macknik and M. S. Livingstone, “Neuronal correlates of visibility and invisibility in the primate visual system,” Nature Neuroscience, vol. 1, pp.144-149, 1998.
[113] J. D. Wicke, E. Donchin and D. B. Lindsley, “Visual evoked potentials as a function of flash luminance and duration,” Science, vol. 146, pp. 83-85, 1964.
[114] K. Saupe, “Neural mechanisms of intermodal sustained selective attention with concurrently presented auditory and visual stimuli,” Frontiers in Human Neuroscience, vol. 3, pp. 1-13, 2009
[115] Z. Kaneko, Y. Hidaka, Y. Hishikawa, A. Shimizu and K. Miyazaki, “Effect of arousal stimulation upon photic driving in the cat,” Psychiatry and Clinical Neurosciences, vol. 15, pp. 206-217, 1961.
[116] H. Strasburger, W. Scheidler and I. Rentschler, “Amplitude and phase characteristics of the steady-state visual evoked potential,” Applied optics, vol. 27, pp. 1069-1088, 1988.
[117] J. Engel,T. A. Pedley, J. Aicardi, M. A. Dichter, and S. Moshe, “Photic Stimulation,” in: Epilepsy: A comprehensive texbook, Lippincott Williams & Wilkins, 2008.
[118] T. N. Cornsweet, “Visual perception,” New Youk: Academic, 1970.
[119] J. Weston and C. Watkins, “Multi-class support vector machines,” Technical Report CSDTR-98-04, Royal Holloway, University of London, Department of Computer Science, 1998.
[120] T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer and D. Haussler, “Support vector machine classification and validation of cancer tissue samples using microarray expression data.” Bioinformatics, vol. 16, pp. 906-914, 2000.
[121] N. Cristianini and J. Shawe-Taylor, “An introduction to support vector machines and other kernel-based learning methods,” Cambridge University Press, 2000.
[122] W. Conover, “Practical nonparametric statistics,” John Wiley and Sons, 1980.
[123] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, “Numerical recipes in C,” Cambridge University Press, 1992.
[124] V. Krishnaveni, S. Jayaraman, S. Aravind, V. Hariharasudhan and K. Ramadoss, “Automatic identification and removal of ocular artifacts from EEG using wavelet transform,” Meas. Science Rev. 6, pp. 45-57, 2006.
[125] C. Brunner, M. Naeem, R. Leeb, B. Graimann and G. Pfurtscheller, “Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis,” Pattern Recognition Lett., vol. 28, pp. 957-964, 2007.
[126] C. L. Yeh, H. C. Chang, C. H. Wu and P. L. Lee, “Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition,” Biomed. Eng. Online, vol. 9, pp.25-42, Jan. 2010.
[127] H. Y. Wu, P. L. Lee, H . C. Chang and J. C. Hsieh, “Accounting for phase drifts in SSVEP-based BCIs by means of biphasic stimulation,” IEEE Trans. Biomed. Eng., vol. 58, pp. 1394-1402, 2011.
[128] K. K. Ang, Z. Y. Chin, H. Zhang and C. Guan, “Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs,” Pattern Recognition, vol. 45, pp. 2137-2144, 2012.
[129] Z. Wu, Y. Lai, Y. Xia, D. Wu and D. Yao, “Stimulator selection in SSVEP-based BCI,” Med. Eng. Phys., vol. 30, pp. 1079-1088, 2008.
[130] M. Middendorf, G. McMillan, G. Calhoun and K. S. Jones, “Brain-computer interfaces based on the steady-state visual-evoked response,” IEEE Trans. Rehabil. Eng., vol. 8, pp. 211-214, 2000.
[131] R. Bergholz, T. N. Lehmann, G. Fritz and K. Ruther, “Fourier transformed steady-state flash evoked potentials for continuous monitoring of visual pathway function,” Doc. Ophthalmol., vol. 116, no. 3, pp. 217-229, 2008.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2013-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明