博碩士論文 101521053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.217.26.216
姓名 梅盛瑋(Sheng-wei Mei)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 六足機器人機構與動作設計實現
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文目標在於設計及製作出一台具有高機動性、高適應性的六足機器人,並且利用順向運動學、全方向步態之概念,為此六足機器人,設計出一種「改良之全方向步態」,以及兩種控制器「前進方向控制器」、及「高度控制器」。前進方向控制器乃是控制機器人可以” 改良之全方向步態”達成任何方向前進的目的;高度控制器可以修正機器人各腳的所有馬達角度,使機器人可蹲下穿越低矮通道後,再次恢復原本高度姿態。另外,本機器人某三隻腳裝有輪子,可在平面地形變換為車型機器人,以輪子快速前進。每隻腳底另有圓盤裝置,可讓機器人攀掛於網狀結構前進、轉彎,以通過溝渠或坑道等無法用腳或輪子通過的地形。值得一提的是機器人也可使用四足模式,讓機器人只用四隻腳前進,並由剩餘兩隻腳做出撿拾、放置物品的動作。若有某隻腳故障,此四足模式仍可讓機器人保持行動力。另外機器人背上裝有一部可旋轉攝影機,可以在行進間隨時傳遞機器人所看到的影像資訊給控制中心。基於以上說明,可見此六足機器人能夠以六足、四足、車型、或懸掛四種模式在平面、崎嶇地面、低矮通道及網狀結構上穩定且快速地移動,且可完成撿拾、放置物品,以及傳遞影像等任務。最後經過多次實驗,機器人在四種模式下皆可順利、穩定執行各項功能,也證實此四種模式讓此機器人具有高機動性、高適應性的特點,未來若再改良,應可讓此六足機器人在災難現場發揮其優異勘災或救災功能。
摘要(英) The objective of this study is to design and fabricate a hexapod robot with high mobility and high adaptability. By using forward kinematics and omni-directional gait concept, we develop a modified omni-directional gait and two types of controller which are a forward direction controller and a height controller for the robot. The forward direction controller can make the robot walk to any direction with the new omni-directional gait. The height controller can adjust the motors’ rotation angle for each leg such that the robot can squat to walk through a low gap and after that return to the original gait. Furthermore, there are three wheels being set under the corresponding three legs. When the robot walks on the flat ground, it can be transformed from a hexapod robot to a vehicle robot for moving fast. There is a disk in the tip of each leg, so that it can upside down hang on the mesh and move forward or turn. This function can be used in the special terrain which cannot be passed by walking or wheels. It is worth mentioning that the robot can change to the quadruped robot model so that the left two legs can pick or grasp something. If any one leg is out of function, the quadruped robot model still can make the robot have the walking ability. Moreover, there is a rotatable camera set on the back of the robot to capture and transfer the images to the control center at any time. In summary, the robot can move with four models, which are hexapod, quadruped, vehicle and hanging models robot, to overcome many types of terrain. Finally, according to many experiments, it is found that the robot in four modes can work smoothly and stably. It is confirmed that the robot has high mobility and high adaptability too. We believe that if there are more improvements on the robot, the robot can play its excellent exploration or disaster relief capabilities at the disaster site.
關鍵字(中) ★ 六足機器人
★ 車型機器人
★ 適應地形
★ 全方向步態
關鍵字(英) ★ Hexapod robot
★ vehicle robot
★ terrain adaptation
★ omni-directional gait
論文目次 摘要 i
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 論文目標 3
1.4 論文架構 4
第二章 系統架構與機構設計 5
2.1 系統架構 5
2.1.1 電腦端系統架構 5
2.1.2 機器人端系統架構 6
2.2 機構設計 11
2.2.1 機器人自由度設計 11
2.2.2 機器人硬體配置 13
2.2.3 機器人結構特色 15
第三章 機器人步態設計與動作開發 17
3.1 六足模式步態設計與動作開發 17
3.1.1 符號定義介紹與步態簡介 17
3.1.2 新全方向步態之控制策略與動作建立 25
3.1.3 適應步態之控制策略與動作建立 34
3.1.4 六足模式延伸動作 38
3.2 四足模式設計、變形與動作開發 40
3.4 車型模式設計、變形與動作開發 42
第四章 實驗成果 47
4.1 環境介紹與實驗流程 47
4.1.1 實驗環境介紹 47
4.1.2 實驗流程 48
4.2 六足模式 48
4.2.1 全方向步態走路 48
4.2.2 崎嶇地形走路 51
4.2.3 六足模式延伸動作 53
4.3 四足模式 60
4.3.1 四足模式走路 60
4.3.2 四足模式延伸動作 61
4.4 車型模式 66
4.5 懸掛模式 69
4.6 實驗結果總結 74
第五章 結論與未來展望 76
5.1 結論 76
5.2 未來展望 76
附錄 78
附錄1 六足模式-視角抬起/降下 78
附錄2 六足模式-轉身 79
附錄3 六足模式變四足模式 80
附錄4 六足模式變車型模式 80
附錄5 六足模式變懸掛模式 82
附錄6 四足模式-視角抬起/降下 83
附錄7 四足模式-撿拾物品 83
附錄8 四足模式-放置物品 85
參考文獻 86
參考文獻 [1] LEGO – MINDSTORMS,
http://mindstorms.lego.com/en-US/default.aspx?icmp=COFranchiseUSMINDSTORMS,2013年6月。
[2] M. Fujita, “AIBO: Toward the Era of Digital Creatures,” The International Journal of Robotics Research, vol. 20, no. 10, pp. 781-794, Oct. 2001.
[3] Boston Dynamics – BigDog,
http://www.bostondynamics.com/robot_bigdog.html,2013年6月。
[4] B. Mobedi and G. Nejat, “3-D Active Sensing in Time-Critical Urban Search and Rescue Missions,” IEEE Transactions on Mechatronics, vol.17, no. 6, pp. 1111-1119, Dec, 2012.
[5] N. Sato, F. Matsuno, and N. Shiroma, “FUMA : Platform Development and System Integration for Rescue Missions,” in Proceedings of IEEE International Workshop Safety, Security and Rescue Robotics, Rome, Italy, Sep. 2007, pp. 1-6.
[6] Y. Yang, G. Xu, X. Wu, H. Feng, and Y. Xu, “Parent-child Robot System for Rescue Missions,” in Proceedings of IEEE International Conference on Robotics and Biomimetics, Guilin, China, Dec. 2009, pp. 1427-1432.
[7] C. Ye, S. Ma, and B. Li, “Design and Basic Experiments of a Shape-shifting Mobile Robot for Urban Search and Rescue,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems, Beijing, China, Oct. 2006, pp. 3994-3999.
[8] Y. Iwano, K. Osuks, and H. Amano, “Proposal of a Rescue Robot System in Nuclear-Power Plants–Rescue Activity via Small Vehicle Robots,” in Proceedings of IEEE International Conference on Robotics and Biomimetics, Shenyang, China, Aug. 2004, pp. 227-232.
[9] P. Liljeback, K. Y. Pettersen, O. Stavdahl, and J. T. Gravdahl, “Snake Robot Locomotion in Environments with Obstacles,” IEEE Transactions on Mechatronics, vol.17, no. 6, pp. 1158-1169, Dec, 2012.
[10] J. H. Park and E. S. Kim, “Foot and Body Control of Biped Robots to Walk on Irregularly Protruded Uneven Surfaces,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 39, no. 1, pp. 289-297, Feb. 2009.
[11] W. A. Lewinger and R. D. Quinn, “A Hexapod Walks Over Irregular Terrain Using a Controller Adapted from an Insect’s Nervous System,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, Oct. 2010, pp. 3386-3391.
[12] S. K. –K. Chu and G. K. –H. Pang, “Comparison Between Different Model of Hexapod Robot in Fault-Tolerant Gait,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol.32, no. 6, pp. 752-756, Nov, 2002.
[13] K. Inoue, K. Ooe, and S. Lee, “Pushing Methods for Working Six-Legged Robots Capable of Locomotion and Manipulation in Three Modes,” in Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, May 2010, pp. 4742-4748.
[14] J. M. Yang and J. H. Kim, “Optimal Fault Tolerant Gait Sequence of the Hexapod Robot with Overlapping Reachable Areas and Crab Walking,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol.29, no. 2, pp. 224-235, Mar, 1999.
[15] K. Kamikawa, T. Arai, K. Inoue, and Y. Mae, “Omni-Directional Gait of Multi-Legged Rescue Robot,” in Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA, May 2004, pp. 2171-2176.
[16] D. M. Wilson, “A Insect Walking,” Annual Review of Entomology, vol. 11, pp. 103-122, Jan. 1966.
[17] X. Duan, W. Chen, S. Yu, and J. Liu, “Tripod Gaits Planning and Kinematics Analysis of a Hexapod Robot,” in Proceedings of IEEE International Conference on Control and Automation, Christchurch, New Zealand, Dec. 2009, pp. 1850-1855.
[18] F. Seljanko, “Towards Omnidirectional Locomotion Strategy for Hexapod Walking Robot,” in Proceedings of IEEE International Symposium Safety, and Security and Rescue Robotics, Kyoto, Japan, Nov. 2011, pp. 143-148.
[19] J. M. Yang and J. H. Kim, “A Fault Tolerant Gait for a Hexapod Robot over Uneven Terrain,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol.30, no. 1, pp. 172-180, Feb, 2000.
[20] K. Inoue, T. Tsurutani, T. Takubo, and T. Arai, “Omni-directional Gait of Limb Mechanism Robot Hanging from Grid-like Structure,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, Oct. 2006, pp. 3386-3391.
[21] IBM ThinkPad T40 筆記型電腦規格說明書,http://www-07.ibm.com/tw/shop/promotion/pdf/T40.pdf,2013年6月。
[22] Logitech MK270 無線滑鼠鍵盤組,http://www.logitech.com/zh-tw/product/wireless-combo-mk270?crid=27,2013年6月。
[23] RoBoard RB-110,
http://www.roboard.com/RB-110.htm,2013年6月。
[24] Microsoft Visual C++ 2008 可轉散發套件 (x86),
http://www.microsoft.com/zh-tw/download/details.aspx?id=29,2013年6月。
[25] Microsoft .NET Framework 3.5 Service Pack 1 (完整套件),http://www.microsoft.com/zh-tw/download/details.aspx?id=25150,2013年6月。
[26] ROBOTIS,
http://www.robotis.com/xe/,2013年6月。
[27] 飆機器人-六足仿生機器人,http://www.playrobot.com/cart/shop.php?type=10000/10007/10066&factory=&pagename=%AD%BA%AD%B6&typeid=400,2013年6月。
[28] 利基應用科技股份有限公司-十八軸小型六足機械獸套件,http://innovati.com.tw/website/cp/html/?58.html,2013年6月。
[29] Oricom Technologies “Slower Gaits”,
http://www.oricomtech.com/projects/leg-walk.htm,2013年6月。
[30] 智慧型控制與影像實驗室-機器人,
http://140.115.70.172/xoops/modules/wfdownloads/viewcat.php?cid=3,2013年6月。
[31] 智慧型控制與影像實驗室-金矽獎得獎作品,
http://140.115.70.172/xoops/modules/wfdownloads/viewcat.php?cid=6,2013年6月。
指導教授 王文俊(Wen-june Wang) 審核日期 2013-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明