參考文獻 |
Allman, J. M. (2000). Evolving brains. New York: WH Freeman.
Amador, N., Schlag-Rey, M., and Schlag, J. (2000). Reward-predicting and reward-detecting neuronal activity in the primarte supplementary eye field. Journal of neurophysiology, 84, 2166-2170.
Antal, A., Terney, D., Poreisz, C., and Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. European Journal of Neuroscience, 26, 2687-2691.
Bichot, N. P., and Schall, J. D. (1999). Effects of similarity and history on neural mechanisms of visual selection. Nature neuroscience, 2(6), 549-554.
Basso, M. A., and Wurtz, R. H. (1997). Modulation of neuronal activity by target uncertainty. Nature, 389(6646), 66-69.
Basso, M. A., and Wurtz, R. H. (1998). Modulation of neuronal activity in superior colliculus by changes in target probability. Journal of Neuroscience, 18(18), 7519-7534.
Carpenter, R. H. (1999). Visual selection: Neurons that make up their minds. Current Biology, 9(16), R595-598.
Carpenter, R. H., and Williams, M. L. (1995). Neural computation of log likelihood in control of saccadic eye movements. Nature, 377(6544), 59-62.
Chun, M. M., and Jiang, Y. (1998). Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognitive psychology, 36(1), 28-71.
Chiau, H. Y., Tseng, P., Su, J. H., Tzeng, O. J., Hung, D. L., Muggleton, N. G., and Juan, C. H. (2011). Trial type probability modulates the cost of antisaccades. Journal of neurophysiology, 106(2), 515-526.
Chen, L. L., and Wise, S. P. (1995). Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations. Journal of Neurophysiology, 73(3), 1101-1121.
Dorris, M. C., and Munoz, D. P. (1998). Saccadic probability influences motor preparation signals and time to saccadic initiation. The Journal of Neuroscience, 18(17), 7015-7026.
Dorris, M. C., Pare, M., and Munoz, D. P. (1997). Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. Journal of Neuroscience, 17(21), 8566-8579.
Doricchi, F., Macci, E., Silvetti, M., and Macaluso, E. (2010). Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cerebral Cortex, 20(7), 1574-1585.
Everling, S., Dorris, M. C., Klein, R. M., and Munoz, D. P. (1999). Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. The Journal of Neuroscience, 19, 2740-2754.
Everling, S., and Fischer, B. (1998). The antisaccade: a review of basic research and clinical studies. Neuropsychologia, 36(9), 885-899.
Everling, S., and Munoz, D. P. (2000). Neuronal correlates for preparatory set associated with pro-saccades and anti- saccades in the primate frontal eye field. The Journal of Neuroscience, 20, 387-400.
Fiser, J., Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499-504.
Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., ... and Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166(1), 23-30.
Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: a priority map for target selection. Trends in cognitive sciences, 10(8), 382-390.
Ferrucci, R., Marceglia, S., Vergari, M., Cogiamanian, F., Mrakic-Sposta, S., Mameli, F., ... and Priori, A. (2008). Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. Journal of cognitive neuroscience, 20(9), 1687-1697.
Geng, J. J., and Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & psychophysics, 67(7), 1252-1268.
Geng, J. J., Ruff, C. C., and Driver, J. (2008). Saccades to a Remembered Location Elicit Spatially Specific Activation in the Human Retinotopic Visual Cortex. Journal of Cognitive Neuroscience, 21, 230-245.
Glimcher, P. W., Fehr, E., Camerer, C., and Poldrack, R. A. (Eds.). (2008). Neuroeconomics: Decision making and the brain. Academic Press.
Glimcher, P. W., and Sparks, D. L. (1992). Movement selection in advance of action in the superior colliculus. Nature, 355(6360), 542-545.
Gandiga, P. C., Hummel, F. C., and Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845-850.
Gmeindl, L., Rontal, A., and Reuter-Lorenz, P. A. (2005). Strategic modulation of the fixation-offset effect: dissociable effects of target probability on prosaccades and antisaccades. Experimental Brain Research, 164(2), 194-204.
Gold, J. I., and Shadlen, M. N. (2000). Representation of a perceptual decision in developing oculomotor commands. Nature, 404(6776), 390-394.
Gold, J. I., and Shadlen, M. N. (2003). The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. The Journal of neuroscience, 23(2), 632-651.
Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision research, 18(10), 1279-1296.
Hsu, T. Y., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng, O. J., ... and Juan, C. H. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage, 56(4), 2249-2257.
Juan, C. H., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L., Cowey, A., and Walsh, V. (2008). Segregation of visual selection and saccades in human frontal eye fields. Cerebral Cortex, 18(10), 2410-2415.
Juan, C. H., Shorter-Jacobi, S. M., and Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15541-15544.
Kristjansson, A. (2007). Saccade landing point selection and the competition account of pro- and antisaccade generation: the involvement of visual attention–areview. Scandinavian Journal of Psychology, 48, 97-113.
Kristjansson, A., Chen, Y., Nakayama, K. (2001). Less attention is more in the preparation of antisaccades, but not prosaccades. Nature Neuroscience, 4, 1037-1042.Kanai, R., Muggleton, N., and Walsh, V. (2012). Transcranial direct current stimulation of the frontal eye fields during pro-and antisaccade tasks. Frontiers in Psychiatry, 3.
Kristjansson, A., Vandenbroucke, M. W., and Driver, J. (2004). When pros become cons for anti- versus prosaccades: factors with opposite or common effects ondifferent saccade types. Experimental Brain Research, 155, 231-244.
Kahneman, D., and Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 263-291.
Liu, C. L., Chiau, H. Y., Tseng, P., Hung, D. L., Tzeng, O. J., Muggleton, N. G., and Juan, C. H. (2010). Antisaccade cost is modulated by contextual experience of location probability. Journal of neurophysiology, 103(3), 1438-1447.
Liu, C. L., Tseng, P., Chiau, H. Y., Liang, W. K., Hung, D. L., Tzeng, O. J., ... and Juan, C. H. (2011). The location probability effects of saccade reaction times are modulated in the frontal eye fields but not in the supplementary eye field. Cerebral Cortex, 21(6), 1416-1425.
Leon, M. I., and Shadlen, M. N. (1999). Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24(2), 415-425.
Miller, J. (1988). Components of the location probability effect in visual search tasks. Journal of experimental psychology, 14(3), 453-471.
Maunsell, J. H. (2004). Neuronal representations of cognitive state: reward or attention?. Trends in cognitive sciences, 8(6), 261-265.
Moore, T. (2006). The neurobiology of visual attention: Finding sources. Current Opinion in Neurobiology, 16, 159-165.
McCreery, D. B., Agnew, W. F., Yuen, T. G., and Bullara, L. A. (1990). Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Transactions on Biomedical Engineering, 37(10), 996-1001. Transactions on Biomedical Engineering
Milstein, D. M., and Dorris, M. C. (2007). The influence of expected value on saccadic preparation. Journal of Neuroscience, 27(18), 4810-4818.
Milstein, D. M., and Dorris, M. C. (2011). The relationship between saccadic choice and reaction times with manipulations of target value. Frontiers in neuroscience, 5.
Munoz, D. P., and Everling, S. (2004). Look away: the anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5(3), 218-228.
Mitchell, J. P., Macrae, C. N., and Gilchrist, I. D. (2002). Working memory and the suppression of reflexive saccades. Journal of Cognitive Neuroscience, 14(1), 95-103.
Munoz, D. P., and Schall, J. D. (2003) in The Superior Colliculus: New Approaches for Studying Sensorimotor Integration (eds Hall, W. C. & Moschovakis, A.), 55-82 (CRC, Boca Raton, Florida, 2003)
Nitsche, M. A., Boggio, P. S., Fregni, F., and Pascual-Leone, A. (2009a). Treatment of depression with transcranial direct current stimulation (tDCS): a Review. Exp. Neurol, 219(1), 14-19.
Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., ... and Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of physiology, 553(1), 293-301.
Nitsche, M. A., Liebetanz, D., Lang, N., Antal, A., Tergau, F., and Paulus, W. (2003b). Safety criteria for transcranial direct current stimulation in humans. Clinical Neurophysiology, 114(11), 2220–2222.
Nitsche, M. A., and Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., and Tergau, F. (2003c). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619-626.
Nyffeler, T., Rivaud-Pechoux, S., Wattiez, N., and Gaymard, B. (2008). Involvement of the supplementary eye field in oculomotor predictive behavior. Journal of cognitive neuroscience, 20(9), 1583-1594.
Olk, B., Kingstone, A. (2003). Why are antisaccades slower than prosaccades? A novel finding using a new paradigm. Neuroreport, 14(1), 151-155.
Olson, C. R., and Gettner, S. N. (2002). Neuronal activity related to rule and conflict in macaque supplementary eye field. Physiology & behavior, 77(4-5), 663.
Platt, M. L., and Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233-238.
Ro, T., Farne, A., and Chang, E. (2002). Locating the human frontal eye fields with transcranial magnetic stimulation. Journal of clinical and experimental neuropsychology, 24(7), 930-940.
Samuelson, P. A. (1938). A note on the pure theory of consumer’s behaviour. Economica, 5(17), 61-71.
Schultz, W. (2000). Multiple reward systems in the brain. Nature reviews neuroscience, 199-207.
Schall, J. D. (2001). Neural basis of deciding, choosing and acting. Nature reviews, 2(1), 33-42.
Schall, J. D. (2004). On the role of frontal eye field in guiding attention and saccades. Vision Research, 44(12), 1453-1467.
Schall, J. D. (2009). Frontal eye field. In: Encyclopedia of Neuroscience, edited by Squire LR. Oxford: Academic, 2009, vol. 4, p. 367–374.
Schall, J. D., and Hanes, D. P. (1993). Neural basis of saccade target selection in frontal eye field during visual search. Nature, 366(6454), 467-469.
Schall, J. D., Stuphorn, V., and Brown, J. W. (2002). Monitoring and control of action by the frontal lobes. Neuron, 36(2), 309-322.
Schall, J. D., and Thompson, K. G. (1999). Neural selection and control of visually guided eye movements. Annual review of neuroscience, 22, 241-259.
Schlag-Rey, M., Amador, N., Sanchez, H., and Schlag, J. (1997). Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature, 390(6658), 398-401.
Shulman, G. L., Astafiev, S. V., Franke, D., Pope, D. L., Snyder, A. Z., McAvoy, M. P., and Corbetta, M. (2009). Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. The Journal of Neuroscience, 29(14), 4392-4407.
Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., ... and Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of neuroscience, 29(16), 5202-5206.
Summerfield, C., and Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409.
Schiller, P. H., and Kendall, J. (2004). Temporal factors in target selection with saccadic eye movements. Experimental brain research Experimentelle Hirnforschung, 154(2), 154-159.
Stagg, C. J., and Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist, 17, 37-53.
Sato, T. R., and Schall, J. D. (2003). Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38(4), 637-648.
Stuphorn, V., Taylor, T. L., and Schall, J. D. (2000). Performance monitoring by the supplementary eye field. Nature, 408(6814), 857-860.
Sommer, M. A., and Wurtz, R. H. (2000). Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. Journal of neurophysiology, 83(4), 1979-2001.
Thompson, K. G., Bichot, N. P., and Schall, J. D. (1997). Dissociation of target selection from saccade planning in macaque frontal eye field. Journal of neurophysiology, 77, 1046-1050.
Thompson, K. G., and Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Progress in brain research, 147, 249-262.
Thompson, K. G., Hanes, D. P., Bichot, N. P., and Schall, J. D. (1996). Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. Journal of neurophysiology, 76, 4040-4055.
Tseng, P., Hsu, T. Y., Tzeng, O. J., Hung, D. L., and Juan, C. H. (2011). Probabilities in implicit learning. Perception, 40(7), 822-829.
Uchida, Y., Lu, X., Ohmae, S., Takahashi, T., and Kitazawa, S. (2007). Neuronal activity related to reward size and rewarded target position in primate supplementary eye field. The Journal of Neuroscience, 27(50), 13750-13755.
Takikawa, Y., Kawagoe, R., Itoh, H., Nakahara, H., and Hikosaka, O. (2002). Modulation of saccadic eye movements by predicted reward outcome. Experimental Brain Research, 142(2), 284-291.
Yuen, T. G., Agnew, W. F., Bullara, L. A., Jacques, S., and McCreery, D. B. (1981). Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery, 9(3), 292-299.
Yeshurun, Y., and Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72-75. |