博碩士論文 992207008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.144.106.207
姓名 王牧晨(Mu-chen Wang)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 期望效果之影響與可能的神經機制
(The effect of expectation and the underlying neural correlations)
相關論文
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 利用跨顱磁刺激探討主動式注意力攫取的神經機制
★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討
★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?
★ 學齡前階段孩童眼動抑制能力的發展和特性★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展
★ 6歲孩童與成人在數字和具體數量上的自動化處理★ Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control
★ 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色★ Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study
★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation★ Using Transcranial Direct-Current Stimulation to Investigate the Roles of the Dorsal Lateral Prefrontal Cortex and the Temporoparietal Junction in Top-Down and Bottom-Up Conflict Resolution
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生物體能夠學習在環境中較有可能發生,或是對該生物體有利的事件,並反應在接下來的行為表現中。例如在搜尋作業中,受試者就可以學習到目標物較有可能出現的位置。動物可以根據現有的信息,調整他們的注意力資源分配特定事件。舉例而言:一些注意力投注而造成的效果,像是逆向眼動耗損(antisaccade cost),就會受機率事件影響而改變。然而,生物體對於某些事件的期望是如何去影響他們的行為,和其潛在的神經機制仍不清楚。期望值可以藉由事件發生的機率和酬賞的大小而量化的操弄。本研究將對機率與酬賞分別進行操弄。研究的第一部分中,我們使用三個跨顱直流電刺激(tDCS)實驗來探討空間機率所造成的效果和其相關的神經機制。第二部份的實驗則探討酬賞的大小對行為造成的影響。
在實驗一和實驗二中,我們分別施打正極tDCS在額葉眼動區(rFEF)以及額葉輔助眼動區(SEF)。而在實驗3中,則將負極tDCS施打於額葉輔助眼動區。在tDCS的刺激後,受試者須要完成含有空間機率操弄的眼動作業。眼動作業中包含了正向眼動(prosaccade)和逆向眼動(antisaccade)兩種眼動型態。實驗一和實驗二的結果顯示,當正極的tDCS施打在額葉眼動區會使正向眼動的反應眼動時間(saccade latencies)減短。此外,相對於高機率位置,正極tDCS在低機率位置對於反應眼動時間有較大的促進效果。這兩種促進的效果都只發生於對額葉眼動區進行刺激而非額葉輔助眼動區。在實驗3中,負極tDCS施打在額葉眼動區使逆向眼動的反應眼動時間減短。這三個實驗顯示額葉眼動區相對於額葉輔助眼動區,在起始眼動上的重要性,並且確認了此區域在處理空間機率所扮演的角色。
在第二部分的研究中,我們在實驗四以及實驗五中操弄獎勵的大小,並讓受試者分組進行正向眼動以及負向眼動作業。在這兩種眼動類型中可以分別探討注意力和運動準備投注到相同或是相反的位置時,酬賞在此兩種情況下所造成的影響。實驗結果證實了在視覺選擇作業下的酬賞對反應眼動時間所造成的促進效果,另外,也提供了酬賞效果在眼動作業中可能造成促進效果的階段。綜上所述,結果顯示兩個在期望值當中扮演重要上對下控制(top-down control)的因素,機率和酬賞,在眼動準備的注意力分配上都為重要的成分。當下累積之期望值所造成的增益除了發生在運動準備的階段外,也可增強在視覺注意力階段的調節。
摘要(英) Animals are capable of learning occurrences that may happen in the environment, and the knowledge of their learning is reflected in their following behavior. According to the prior information, animals can adjust their attention allocations to specific events. For example, performance in searching task and antisaccade cost can be affected by probability events. However, how expectation modulates participants’ behavior and their underlying neural mechanisms are still unclear. Expectation can be measured as the probability for an action and the magnitude of the reward. The present study will manipulate probability and reward size separately. In the first part of this study, three tDCS experiments were utilized to establish the causal links between brain regions and location probability effect. The contribution of reward effect is examined in the behavior experiment in the second part.
In experiment 1 and 2, offline anodal (excitatory) tDCS was applied with the active electrode placed over the rFEF or SEF. In experiment 3, offline cathodal (inhibitory) tDCS was applied over rFEF. Directly after tDCS stimulation, participants were asked to complete a pro- or anti- saccade task which manipulated location probability. The results in experiment 1 and 2 indicated that saccade latencies for prosaccades were significantly shorter when anodal tDCS was applied to the rFEF but not SEF. Additionally, when applying anodal tDCS in FEF produced a larger effect for low probability locations than high probability locations led a major interaction between tDCS condition and location probability. In experiment 3, cathodal tDCS led faster saccade latencies in antisaccades. The results demonstrate that reduction on saccade latencies induced by both anodal and cathodal tDCS over the rFEF, which confirms the role of rFEF in saccade initiation. The findings also dissociate the critical roles of the rFEF and SEF in the effect of location probability and confirm the importance of rFEF in processing location probability information. The current tDCS experiments suggest that the FEF plays a critical role in modulating the location probability effects and the saccade latencies.
In the second part of the study, we investigated other factor that is essential to expectation. In experiment 4 and 5, reward size was manipulated in the prosaccade task and antisaccade task. The separation of two saccade types could exam the effect of reward when the spatial attention and motor preparation is compatible or not. The results confirm the reward effect in a visual selection task. Moreover, we provided the potential stages that top-down control might influence in saccade latencies.
In summary, the results show that two top-down factors are related to expectation, probability and reward, can account for attentional allocation of saccadic preparation. The prior expectation is not only an important factor for motor preparation, but also critical for the flexibility of visual attention.
關鍵字(中) ★ 額葉眼動區
★ 額葉輔助眼動區
關鍵字(英) ★ FEF
★ SEF
★ saccade
★ expactation
論文目次 Chapter 1: Introduction 1
1.1 Expectation and decision-making in visual cognition 1
1.2 The aim of this thesis 3
Chapter 2: The neural mechanism of the location probability effect 4
2.1 The probability and eye movements 4
2.2 Neural correlates of probability effect 6
2.3 Transcranial direct current stimulation (tDCS) 9
2.4 The purpose of the three tDCS experiments 10
2.4.1 General methods 10
2.5 Experiment 1 (Anodal in rFEF) 16
2.5.1 Methods 16
2.5.2 Results 17
2.5.3 Discussion 21
2.6 Experiment 2 (Anodal in SEF) 22
2.6.1 Methods 22
2.6.2 Results 23
2.6.3 Discussion 26
2.7 Experiment 3 (Cathodal in rFEF) 27
2.7.1 Methods 27
2.7.2 Results 28
2.7.3 Discussion 31
2.8 General discussion 32
Chapter 3: The effect of reward in prosaccade task and antisaccade task 36
3.1 Introduction 36
3.2 Purposes 37
3.3Experiment 4 (prosaccade) 38
3.3.1 General methods 38
3.3.2 Results 41
3.3.3 Discussion 42
3.4 Experiment 5 (Antisaccade) 43
3.4.1 General methods 43
3.4.2 Results 44
3.4.3 Discussion 46
Chapter 4: General discussion and future directions 48
References 53
Appendices 60
參考文獻 Allman, J. M. (2000). Evolving brains. New York: WH Freeman.
Amador, N., Schlag-Rey, M., and Schlag, J. (2000). Reward-predicting and reward-detecting neuronal activity in the primarte supplementary eye field. Journal of neurophysiology, 84, 2166-2170.
Antal, A., Terney, D., Poreisz, C., and Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. European Journal of Neuroscience, 26, 2687-2691.
Bichot, N. P., and Schall, J. D. (1999). Effects of similarity and history on neural mechanisms of visual selection. Nature neuroscience, 2(6), 549-554.
Basso, M. A., and Wurtz, R. H. (1997). Modulation of neuronal activity by target uncertainty. Nature, 389(6646), 66-69.
Basso, M. A., and Wurtz, R. H. (1998). Modulation of neuronal activity in superior colliculus by changes in target probability. Journal of Neuroscience, 18(18), 7519-7534.
Carpenter, R. H. (1999). Visual selection: Neurons that make up their minds. Current Biology, 9(16), R595-598.
Carpenter, R. H., and Williams, M. L. (1995). Neural computation of log likelihood in control of saccadic eye movements. Nature, 377(6544), 59-62.
Chun, M. M., and Jiang, Y. (1998). Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognitive psychology, 36(1), 28-71.
Chiau, H. Y., Tseng, P., Su, J. H., Tzeng, O. J., Hung, D. L., Muggleton, N. G., and Juan, C. H. (2011). Trial type probability modulates the cost of antisaccades. Journal of neurophysiology, 106(2), 515-526.
Chen, L. L., and Wise, S. P. (1995). Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations. Journal of Neurophysiology, 73(3), 1101-1121.
Dorris, M. C., and Munoz, D. P. (1998). Saccadic probability influences motor preparation signals and time to saccadic initiation. The Journal of Neuroscience, 18(17), 7015-7026.
Dorris, M. C., Pare, M., and Munoz, D. P. (1997). Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. Journal of Neuroscience, 17(21), 8566-8579.
Doricchi, F., Macci, E., Silvetti, M., and Macaluso, E. (2010). Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cerebral Cortex, 20(7), 1574-1585.
Everling, S., Dorris, M. C., Klein, R. M., and Munoz, D. P. (1999). Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. The Journal of Neuroscience, 19, 2740-2754.
Everling, S., and Fischer, B. (1998). The antisaccade: a review of basic research and clinical studies. Neuropsychologia, 36(9), 885-899.
Everling, S., and Munoz, D. P. (2000). Neuronal correlates for preparatory set associated with pro-saccades and anti- saccades in the primate frontal eye field. The Journal of Neuroscience, 20, 387-400.
Fiser, J., Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499-504.
Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., ... and Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166(1), 23-30.
Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: a priority map for target selection. Trends in cognitive sciences, 10(8), 382-390.
Ferrucci, R., Marceglia, S., Vergari, M., Cogiamanian, F., Mrakic-Sposta, S., Mameli, F., ... and Priori, A. (2008). Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. Journal of cognitive neuroscience, 20(9), 1687-1697.
Geng, J. J., and Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & psychophysics, 67(7), 1252-1268.
Geng, J. J., Ruff, C. C., and Driver, J. (2008). Saccades to a Remembered Location Elicit Spatially Specific Activation in the Human Retinotopic Visual Cortex. Journal of Cognitive Neuroscience, 21, 230-245.
Glimcher, P. W., Fehr, E., Camerer, C., and Poldrack, R. A. (Eds.). (2008). Neuroeconomics: Decision making and the brain. Academic Press.
Glimcher, P. W., and Sparks, D. L. (1992). Movement selection in advance of action in the superior colliculus. Nature, 355(6360), 542-545.
Gandiga, P. C., Hummel, F. C., and Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845-850.
Gmeindl, L., Rontal, A., and Reuter-Lorenz, P. A. (2005). Strategic modulation of the fixation-offset effect: dissociable effects of target probability on prosaccades and antisaccades. Experimental Brain Research, 164(2), 194-204.
Gold, J. I., and Shadlen, M. N. (2000). Representation of a perceptual decision in developing oculomotor commands. Nature, 404(6776), 390-394.
Gold, J. I., and Shadlen, M. N. (2003). The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. The Journal of neuroscience, 23(2), 632-651.
Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision research, 18(10), 1279-1296.
Hsu, T. Y., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng, O. J., ... and Juan, C. H. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage, 56(4), 2249-2257.
Juan, C. H., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L., Cowey, A., and Walsh, V. (2008). Segregation of visual selection and saccades in human frontal eye fields. Cerebral Cortex, 18(10), 2410-2415.
Juan, C. H., Shorter-Jacobi, S. M., and Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15541-15544.
Kristjansson, A. (2007). Saccade landing point selection and the competition account of pro- and antisaccade generation: the involvement of visual attention–areview. Scandinavian Journal of Psychology, 48, 97-113.
Kristjansson, A., Chen, Y., Nakayama, K. (2001). Less attention is more in the preparation of antisaccades, but not prosaccades. Nature Neuroscience, 4, 1037-1042.Kanai, R., Muggleton, N., and Walsh, V. (2012). Transcranial direct current stimulation of the frontal eye fields during pro-and antisaccade tasks. Frontiers in Psychiatry, 3.
Kristjansson, A., Vandenbroucke, M. W., and Driver, J. (2004). When pros become cons for anti- versus prosaccades: factors with opposite or common effects ondifferent saccade types. Experimental Brain Research, 155, 231-244.
Kahneman, D., and Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 263-291.
Liu, C. L., Chiau, H. Y., Tseng, P., Hung, D. L., Tzeng, O. J., Muggleton, N. G., and Juan, C. H. (2010). Antisaccade cost is modulated by contextual experience of location probability. Journal of neurophysiology, 103(3), 1438-1447.
Liu, C. L., Tseng, P., Chiau, H. Y., Liang, W. K., Hung, D. L., Tzeng, O. J., ... and Juan, C. H. (2011). The location probability effects of saccade reaction times are modulated in the frontal eye fields but not in the supplementary eye field. Cerebral Cortex, 21(6), 1416-1425.
Leon, M. I., and Shadlen, M. N. (1999). Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24(2), 415-425.
Miller, J. (1988). Components of the location probability effect in visual search tasks. Journal of experimental psychology, 14(3), 453-471.
Maunsell, J. H. (2004). Neuronal representations of cognitive state: reward or attention?. Trends in cognitive sciences, 8(6), 261-265.
Moore, T. (2006). The neurobiology of visual attention: Finding sources. Current Opinion in Neurobiology, 16, 159-165.
McCreery, D. B., Agnew, W. F., Yuen, T. G., and Bullara, L. A. (1990). Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Transactions on Biomedical Engineering, 37(10), 996-1001. Transactions on Biomedical Engineering
Milstein, D. M., and Dorris, M. C. (2007). The influence of expected value on saccadic preparation. Journal of Neuroscience, 27(18), 4810-4818.
Milstein, D. M., and Dorris, M. C. (2011). The relationship between saccadic choice and reaction times with manipulations of target value. Frontiers in neuroscience, 5.
Munoz, D. P., and Everling, S. (2004). Look away: the anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5(3), 218-228.
Mitchell, J. P., Macrae, C. N., and Gilchrist, I. D. (2002). Working memory and the suppression of reflexive saccades. Journal of Cognitive Neuroscience, 14(1), 95-103.
Munoz, D. P., and Schall, J. D. (2003) in The Superior Colliculus: New Approaches for Studying Sensorimotor Integration (eds Hall, W. C. & Moschovakis, A.), 55-82 (CRC, Boca Raton, Florida, 2003)
Nitsche, M. A., Boggio, P. S., Fregni, F., and Pascual-Leone, A. (2009a). Treatment of depression with transcranial direct current stimulation (tDCS): a Review. Exp. Neurol, 219(1), 14-19.
Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., ... and Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of physiology, 553(1), 293-301.
Nitsche, M. A., Liebetanz, D., Lang, N., Antal, A., Tergau, F., and Paulus, W. (2003b). Safety criteria for transcranial direct current stimulation in humans. Clinical Neurophysiology, 114(11), 2220–2222.
Nitsche, M. A., and Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., and Tergau, F. (2003c). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619-626.
Nyffeler, T., Rivaud-Pechoux, S., Wattiez, N., and Gaymard, B. (2008). Involvement of the supplementary eye field in oculomotor predictive behavior. Journal of cognitive neuroscience, 20(9), 1583-1594.
Olk, B., Kingstone, A. (2003). Why are antisaccades slower than prosaccades? A novel finding using a new paradigm. Neuroreport, 14(1), 151-155.
Olson, C. R., and Gettner, S. N. (2002). Neuronal activity related to rule and conflict in macaque supplementary eye field. Physiology & behavior, 77(4-5), 663.
Platt, M. L., and Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233-238.
Ro, T., Farne, A., and Chang, E. (2002). Locating the human frontal eye fields with transcranial magnetic stimulation. Journal of clinical and experimental neuropsychology, 24(7), 930-940.
Samuelson, P. A. (1938). A note on the pure theory of consumer’s behaviour. Economica, 5(17), 61-71.
Schultz, W. (2000). Multiple reward systems in the brain. Nature reviews neuroscience, 199-207.
Schall, J. D. (2001). Neural basis of deciding, choosing and acting. Nature reviews, 2(1), 33-42.
Schall, J. D. (2004). On the role of frontal eye field in guiding attention and saccades. Vision Research, 44(12), 1453-1467.
Schall, J. D. (2009). Frontal eye field. In: Encyclopedia of Neuroscience, edited by Squire LR. Oxford: Academic, 2009, vol. 4, p. 367–374.
Schall, J. D., and Hanes, D. P. (1993). Neural basis of saccade target selection in frontal eye field during visual search. Nature, 366(6454), 467-469.
Schall, J. D., Stuphorn, V., and Brown, J. W. (2002). Monitoring and control of action by the frontal lobes. Neuron, 36(2), 309-322.
Schall, J. D., and Thompson, K. G. (1999). Neural selection and control of visually guided eye movements. Annual review of neuroscience, 22, 241-259.
Schlag-Rey, M., Amador, N., Sanchez, H., and Schlag, J. (1997). Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature, 390(6658), 398-401.
Shulman, G. L., Astafiev, S. V., Franke, D., Pope, D. L., Snyder, A. Z., McAvoy, M. P., and Corbetta, M. (2009). Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. The Journal of Neuroscience, 29(14), 4392-4407.
Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., ... and Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of neuroscience, 29(16), 5202-5206.
Summerfield, C., and Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409.
Schiller, P. H., and Kendall, J. (2004). Temporal factors in target selection with saccadic eye movements. Experimental brain research Experimentelle Hirnforschung, 154(2), 154-159.
Stagg, C. J., and Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist, 17, 37-53.
Sato, T. R., and Schall, J. D. (2003). Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38(4), 637-648.
Stuphorn, V., Taylor, T. L., and Schall, J. D. (2000). Performance monitoring by the supplementary eye field. Nature, 408(6814), 857-860.
Sommer, M. A., and Wurtz, R. H. (2000). Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. Journal of neurophysiology, 83(4), 1979-2001.
Thompson, K. G., Bichot, N. P., and Schall, J. D. (1997). Dissociation of target selection from saccade planning in macaque frontal eye field. Journal of neurophysiology, 77, 1046-1050.
Thompson, K. G., and Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Progress in brain research, 147, 249-262.
Thompson, K. G., Hanes, D. P., Bichot, N. P., and Schall, J. D. (1996). Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. Journal of neurophysiology, 76, 4040-4055.
Tseng, P., Hsu, T. Y., Tzeng, O. J., Hung, D. L., and Juan, C. H. (2011). Probabilities in implicit learning. Perception, 40(7), 822-829.
Uchida, Y., Lu, X., Ohmae, S., Takahashi, T., and Kitazawa, S. (2007). Neuronal activity related to reward size and rewarded target position in primate supplementary eye field. The Journal of Neuroscience, 27(50), 13750-13755.
Takikawa, Y., Kawagoe, R., Itoh, H., Nakahara, H., and Hikosaka, O. (2002). Modulation of saccadic eye movements by predicted reward outcome. Experimental Brain Research, 142(2), 284-291.
Yuen, T. G., Agnew, W. F., Bullara, L. A., Jacques, S., and McCreery, D. B. (1981). Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery, 9(3), 292-299.
Yeshurun, Y., and Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72-75.
指導教授 阮啟弘(Chi-hung Juan) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明