博碩士論文 993303003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:18.224.68.243
姓名 廖振淵(Chen-yuan Liao)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 行星式機構結合二維振動輔助磁力研磨應用於SUS304不鏽鋼曲面凹槽之研究
(A Study of Magnetic Polishing for SUS304 Curve Surface with Planetary Bodies Combined Two-Dimensional Vibration)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
傳統的振動輔助方式,多為平行或垂直於工件表面的單軸向往復振動機制,垂直工件表面的振動輔助機制易造成研磨刮痕加深且不易得到鏡面效果,而平行工件表面易在同一表面出現重複研磨痕跡,造成表面研磨不均。
本研究是以驗證自行開發的行星機構結合二維振動輔助磁力研磨機制於不鏽鋼曲面凹槽上進行拋光,其主要目的是利用行星機構自轉與公轉的優點,使其表面形成高密度的交叉紋路外,還可達到省時節能又環保,進而達到高品質、高效率、低耗能的指標。
藉由控制磁極間距、振動平台振幅、鋼砂粒徑、SiC、重量、鋼砂重量、研磨液重量、振動平台頻率、磁極轉速…等一系列的實驗探討後,得知行星機構結合二維振動輔助機制能有效提昇表面品質與效率。
經由田口驗證實驗可以得知,對於平面表面粗糙度Ra 0.058μm的改善較佳參數組合為:磁極間距1mm、振動平台振幅0.1mm、鋼砂粒徑0.125mm、SiC重量3g、鋼砂重量0.5g*2、研磨液重量5g、振動平台頻率16.667Hz、磁極轉速(伺服轉速)500rpm(公轉156)。
對於曲面凹槽粗糙度Ra 0.058μm的改善較佳參數組合為:磁極間距0.5mm、振動平台振幅0.1mm、鋼砂粒徑0.125mm、SiC重量3g、鋼砂重量0.5g*2、研磨液重量5g、振動平台頻率16.667Hz、磁極轉速500rpm(公轉156)。
行星機構結合二維振動輔助磁力研磨加工法在較佳參數組合下,能有效改善平面不鏽鋼表面粗糙度由Ra 0.23μm改善至0.058μm,改善率達到74%;及改善曲面凹槽不鏽鋼表面粗糙度由Ra 0.22μm改善至0.058μm,改善率達到74%。由此可以證明行星機構結合二維振動輔助機制是能夠有效提升平面與凹槽表面的表面品質的。
關鍵字:行星機構、二維振動、不鏽鋼拋光、自轉與公轉
摘要(英) Abstract
The normal vibration directions of vibration-assisted magnetic abrasive finishing are all parallel or perpendicular to the surface of workpiece. It’s shortcomings are easily lead to more scratches on the surface, and difficult to obtain mirror effect.
A study of magnetic polishing for SUS304 with planetary bodies combined two-dimensional vibration. The main purpose of the planetary bodies of rotation and revolution characteristics, excellent surface morphology, and saving energy and time can also be reached. Series of experiments by controlling the working gap, the amplitude of the vibration platform, steel particle size and so on. This mechanism can enhance the surface quality and efficiency.
Taguchi experiment show that the combination of better parameters for the surface improvement : working gap 1 mm, the amplitude of the vibration platform 0.1mm, steel particle size of 0.125 mm , SiC weight of 3 g, steel weight of 0.5 g * 2, the weight of the slurry 5g, vibration platform frequency of 16.667Hz, magnet pole rotational speed 500 rpm (156).
For the curve improvement : working gap 0.5 mm, the amplitude of the vibration platform 0.1mm, steel particle size of 0.125 mm , SiC weight of 3 g, steel weight of 0.5 g * 2, the weight of the slurry 5g, vibration platform frequency of 16.667Hz, magnet pole rotational speed 500 rpm (156).
This mechanism can be effective in improving the stainless surface S.R. from Ra 0.23 μm to 0.058 μm, improvement rate was 74% and improving the stainless curve S.R. from Ra 0.23 μm to 0.058 μm, improvement rate was 74%. which can prove that planetary bodies combination of the two-dimensional vibration support mechanisms to improve quality.
Keywords: planetary bodies, two-dimensional vibration, polished stainless steel, rotation and revolution.
關鍵字(中) ★ 行星機構
★ 二維振動
★ 不鏽鋼拋光
★ 自轉與公轉
關鍵字(英) ★ planetary bodies
★ two-dimensional vibration
★ polished stainless steel
★ otation and revolution
論文目次 iv
目 錄
摘 要……………………………………………………………………………i
Abstract..............................................................................................................ii
謝 誌..................................................................................................................iii
目 錄..................................................................................................................iv
圖 目 錄......................................................................................................... viii
表 目 錄........................................................................................................... xi
第一章 緒論......................................................................................................1
1-1 前言.....................................................................................................1
1-2 研究背景與目的.................................................................................4
1-3 研究架構.............................................................................................6
1-4 文獻回顧.............................................................................................7
第二章 基本原理............................................................................................ 12
2-1 磁力研磨加工原理........................................................................... 12
2-2 磁性磨粒之切削加工機制............................................................... 15
2-3 PLC 可程式控制器原理............................................................... 17
2-4 伺服馬達與伺服驅動器.................................................................. 20
2-5 田口式品質工程.............................................................................. 23
2-5-1 田口方法概述...................................................................... 23 v
2-5-2 實驗設計流程...................................................................... 23
2-5-3 決定目標特性...................................................................... 25
2-5-4 直交陣列表.......................................................................... 25
2-5-5 訊號/噪音比......................................................................... 27
2-5-6 變異數分析.......................................................................... 27
2-5-7 驗證實驗.............................................................................. 29
第三章 實驗設計與研究內容....................................................................... 30
3-1 實驗流程規劃.................................................................................. 30
3-2 加工構想.......................................................................................... 32
3-3 實驗材料.......................................................................................... 34
3-3-1 工件材料............................................................................... 34
3-3-2 磁性磨料............................................................................... 34
3-3-3 切削液................................................................................... 35
3-4 實驗設備.......................................................................................... 37
3-4-1 磁力輔助二維振動研磨機.................................................. 37
3-4-2 2D 表面粗度輪廓形狀量測機............................................ 38
3-4-3 3D 表面粗度輪廓形狀量測機............................................ 38
3-4-4 低真空掃描式電子顯微鏡(Low Vacuum-Scanning Electron
Microscope: LVSEM) ............................................................................ 39 vi
3-4-5 精密電子天平....................................................................... 40
3-4-6 超音波洗淨機....................................................................... 40
3-4-7 原子力顯微鏡(AFM)............................................................ 40
3-5 實驗方法........................................................................................ 41
3-5-1 實驗參數設計.................................. .................................. 41
3-5-2 實驗步驟............................................................................. 44
3-5-3 表面粗糙度之量測............................................................. 45
3-6 磁力輔助振動拋光設備................................................................. 46
3-6-1 振動輔助機構設計.............................................................. 46
3-6-2 磁極距離調整機構設計..................................................... .47
3-6-3 行星機構開發設計.............................................................. 48
3-6-4 PLC 控制程式撰寫.............................................................. 51
第四章 結果與討論....................................................................................... 56
4-1 前置實驗.........................................................................................56
4-1-1 行星機構結合二維輔助振動機台穩定性分析................. 56
4-1-2 不同切削液對粗糙度之影響............................................. 57
4-1-3 實驗參數水準設計............................................................. 58
4-1-4 振動輔助對磁力研磨之影響............................................. 61
4-1-5 行星機構結合二維振動對磁力研磨之影響......................61
4-2 實驗結果分析................................................................................. 63
4-2-1 因子效果回應分析.............................................................. 63
4-2-2 變異數分析(ANOVA)及 F 檢定(F-test).................. 66
4-2-3 驗證實驗............................................................................... 67
4-3 單因子實驗....................................................................................... 69
4-3-1 實驗條件與規劃................................................................... 69
4-3-2 磁極間距對表面粗糙度之影響........................................... 70
4-3-3 振動平台振福對表面粗糙度之影響................................... 73
4-3-4 鋼砂粒徑對表面粗糙度之影響.......................................... 76
4-3-5 SiC 重量對表面粗糙度之影響........................................ 79
4-3-6 鋼砂重量對表面粗糙度之影響.......................................... 82
4-3-7 研磨液重量對表面粗糙度之影響...................................... 85
4-3-8 振動平台頻率對表面粗糙度之影響.................................. 88
4-3-9 磁極轉速對表面粗糙度之影響.......................................... 91
4-4 行星機構優點之探討..................................................................... 94
第五章 結論................................................................................................... 96
參考文獻......................................................................................................... 98
參考文獻 參考文獻
1. 黃孟祥,「磁氣研磨法於微細電極表面拋光技術之研究」,國立雲林科技大學,碩士論文,2000。
2. 莊政儒,「磁力研磨法應用於方管內表面精磨之研究」,私立華梵大學,碩士論文,2002。
3. S. Yin and T. Shinmura, “Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy”, International Journal Of Machine Tools & Manufacture, Vol. 44, NO.12-13, pp.1297-1303, 2004.
4. 夏目勝之,進村武男,“振動方式磁気研磨加工における研磨速度の研磨特性に及ぼす効果”,砥粒加工学会会誌, Vol. 52, No. 9, pp. 531-536, 2008。
5. Rahul S. Mulik, Pulak M. Pandey,“Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives”, Int. Journal Of Refractory Metals and Hard Materials,Vol.29,NO.1,pp.68-77, 2011.
6. 張榮顯,「磁力研磨加工應用於放電加工表面改善之研究」,國立中央大學,碩士論文,2001。
7. VK. Jain, P. Kumar, PK. Behera and SC. Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, Wear, Vol.250, NO.1-12, pp.384-390, 2001.
8. D. Wang, T. Shinmura, H. Yamaguchi, “Study of magnetic field assisted mechanochemical polishing process for inner surface of Si3N4 ceramic components finishing characteristics under wet finishing using distilled water”, International Journal Of Machine Tools & Manufacture, Vol.44, NO.14, pp.1547-1553, 2004.
9. Hitomi Yamaguchi, Takeo Shinmura,“Ienternal finishing process for alumina ceramic components by a magnetic field assisted finishing process” , Precision Engineering,Vol.28,NO.2,pp.135-142,2004.
10. Y. Wang and DJ. Hu, “Study on the inner surface finishing of tubing by magnetic abrasive finishing”, International Journal Of Machine Tools & Manufacture, Vol.45, NO.1, pp.43-49, 2005.
11. JS. Kwak, “Enhanced magnetic abrasive polishing of non-ferrous metals utilizing a permanent magnet”, Journal of Machine Tools & Manufacture, Vol.49, pp.613-618, 2009.
12. Tae-Wan Kim and Jae-Seob kwak,“A study on deburring of magnesium alloy plate by magnetic abrasive polishing”, International Journal Of Precision Engineering and Manufacturing,Vol.11,NO.2,pp.189-194,2010.
13. DK. Singh, VK. Jain, V. Raghuram and R. Komanduri, “Analysis of surfacetexture generated by a flexible magnetic abrasive brush”, Wear, Vol.259, NO.7-12, pp.1254-1261, 2005.
14. B. Karpuschewski, O. Byelyayev, V.S. Maiboroda, “Magneto-abrasive machining for the mechanical preparation of high-speed steel twist drills”, CIRP Annals - Manufacturing Technology, 58, pp.295-298, 2009.
15. K. Shimada, Y. Wu and YC. Wong, “Effect of magnetic cluster and magnetic field on polishing using magnetic compond fluid”, Journal Of Magnetism and Magnetic Materials, Vol.262, NO.2, pp. 242-247, 2003.
16. K. Hanada, H. Yamaguchi and H. Zhou, “New spherical magnetic abrasives with carried diamond particles for internal finishing of capillary tubes”, Diamond and Related Materials, Vol.17, NO.7-10, pp. 1434-1437, 2008.
17. T. Furuya, Y. Wu, M. Nomura, K. Shimada, K. Yamamoto, “Fundamental performance of magnetic compound fluid polishing liquid in contact-free polishing of metal surface” ,Journal Of Materials Processing, Vol.201, NO.1-3, pp. 536-541, 2008.
18. V.K Jain, P. Ranjan, V.K. Suri, R. Komanduri, “Chemo-mechanical magneto-rheological finishing (CMMRF) of silicon for microelectronics applications” ,CIRP Annals-Manufacturing Technology ,Vol.59 ,NO.1,pp.323-328 ,2010.
19. S. Singh, HS. Shan and P. Kumar, “Wear behavior of materials in magnetically assisted abrasive flow machining”, Journal Of Materials Processing Technology, Vol.128, NO.1-3 , pp. 155-161, 2002.
20. 鄭棕仁,「電解與磁力研磨之複合加工技術研究」,國立中央大學,碩士論文,2002。
21. 偕義弘,「電解與磁力研磨之複合加工應用於內壁表面改善之研究」,國立中央大學,碩士論文,2003。
22. Tae-Soo KWAK,Yong-Chul Lee,Gyung-Nyun Kim,Dae-Bong CHOI,Mikio YAMANOI,Hitoshi OHMORI, “Nano-precisioncombinedprocess of electrolytic in-processdressinggrinding and magneticassistedpolishing on opticsglassmaterial” , Transactions of Nonferrous Metals Society of China,Vol.19,NO.1,pp.301-306,2009.
23. H.Yamaguchi and T.Shinumura, “Study of an internal magnetic abrasive finishing using a pole rotation system discussion of the characteristic abrasive behavior” ,Precision Engineering-Journal Of The International Societies For Precision Engineering and Nanotechnology, Vol.24, NO.3, pp.237-244, 2000.
24. T. Shinmura, T. Aizawa, “Study on Internal Finishing of Nonferromagnetic Tubing by Magnetic Abrasive Machining Process”, Bulletin Of The Japan Society Of Precision Engineering, Vol.23, NO.1, pp.37-41, 1989.
25. 進村武男,“磁氣研磨法の現狀課題”,機械と工具,pp.16-21, 1996。
26. 陳福春,PLC可程式控制器-原理與實習,五版,高立圖書有限公司,台北,2004。
27. 顏嘉男,泛用伺服馬達應用技術,全華圖書有限公司,台北,2006。
28. 李輝煌,田口方法-品質設計的原理與實務,三版,高立圖書有限公司,台北,2010。
29. 林清田,「不鏽鋼SUS304磁力研磨拋光加工特性之研究」,國立中興大學,碩士論文,2004。
30. T. Shinmura, K. Takazawa, E. Hatano, “Study on Magnetic Abrasive Finishing”, Annals Of The CIRP, Vol.39, NO.1, pp.325-328, 1990.
31. 電機工程手冊編輯委員會,機械工程手冊2-鋼材料,五南圖書有限公司,2002。
32. 蔡永興,「應用可撓式磁力輔助拋光工具之二維振動研究」,國立中央大學,碩士論文,2011。
33. 白崇廷,「行星式機構結合二維振動輔助磁力研磨應用於SUS304不鏽鋼之研究」國立中央大學,碩士論文,2012。
指導教授 顏炳華(Piin-hwa Yan) 審核日期 2013-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明