博碩士論文 943403006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.18.109.154
姓名 劉建富(Chien-Fu Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 狹小空間內微多孔表面之蒸發熱傳性能研究
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於沸騰蒸發可以有較高的熱傳係數,以蒸發熱傳設計的微熱交換器,可能可以解決高熱通量電子設備的散熱需求,然而,微熱交換器的沸騰熱傳通常都被限制在很小的空間內,汽泡生長在狹小空間內會與開放空間差異很大,此研究以微多孔表面提高沸騰熱傳性能並且分別在開放空間與狹小空間內進行測試,探討微多孔表面應用在狹小空間內的可行性。
使用甲醇為工作流體在垂直方向的加熱面上,分別進行平滑板與不同微多孔層厚度(81、109、150、182及225 m)以及開放空間與不同狹小空間(1、2和3 mm),在1大氣壓時的池沸騰熱傳性能實驗與流譜觀察。探討微多孔表面的厚度與狹小空間的間距,對不同熱通量時的熱傳係數與臨界熱通量變化,並且以每秒拍攝1000張的高速攝影機,觀察汽泡生長與週期性的流譜變化,由汽泡成長過程的整體變化來驗證熱傳實驗結果。
實驗結果顯示出微多孔表面具有大量的有效成核孔洞,增加核沸騰汽泡產生的數量,與平滑板相比可以增加熱傳係數4.5倍,但微多孔表面也會有較高的汽泡脫離阻礙與多孔層本身的熱阻,這三者相互作用下造成在開放空間與狹小空間都會有一個最佳厚度有著最佳的熱傳性能,在此實驗中150 m厚度的微多孔表面有最高的熱傳係數。
而在間距的影響探討顯示出,間距對平滑板沸騰熱傳性能的影響主要參數有四個,(a)薄液膜蒸發、(b)液體強制對流、(c)蒸汽脫離的阻礙和(d)部分乾涸的影響。但是在微多孔表面由於多孔的毛細吸力可以保持加熱表面的潤濕,所以部分乾涸的影響消失,而微多孔的結構也會減少變形汽泡造成的薄液膜蒸發。間距對微多孔表面熱傳性能影響的主要參數只有(a)液體強制對流和(c)蒸汽脫離的阻礙。在兩者的交互作用下,造成微多孔表面對平滑板的熱傳增強率,在低和中熱通量時,會隨著間距縮小而下降,但在高熱通量下間距的影響較不明顯。實驗結果也顯示出,平滑板與微多孔表面的臨界熱通量都會隨著間距縮小而下降,在間距小於1 mm時除了間距會影響臨界熱通量外,微多孔層厚度也會造成臨界熱通量的下降。微多孔表面在低和中熱通量下,是非常有效的池沸騰熱傳增強方式,但在非常狹小的空間或是非常高的熱通量時,熱傳增強率會減少。
摘要(英) Attributed to its high heat transfer coefficient, evaporating cooling involving the use of micro heat exchangers is considered a possible thermal management solution for cooling of high heat flux electronic devices. The boiling heat transfer in micro heat exchangers is generally confined in a very narrow space. The heat transfer characteristics are indeed different from those of conventional unconfined boiling. This work provides an experimental analysis of the boiling heat transfer of methanol on plain and micro porous coated surfaces inside confined space. Three space confinements with distance of 1.0, 2.0, 3.0 mm and unconfined spaces and five micro porous coating surfaces with thicknesses of 81, 109, 150, 182 and 225 m were tested. Effects of space confinement, surface treatment and heat flux on the heat transfer coefficient and critical heat flux were discussed. The micro porous coating layer provides large amount of active nucleation sites that significantly enhances heat transfer coefficients up to a factor of 4.5 in comparing to that on plain surface. But the porous coating layer also exerts higher bubble leaving resistance and coating layer thermal resistance. The combination of these three effects brought about an optimum coating layer thickness for micro porous surfaces in both confined and unconfined spaces.
From the test results, we may deduct that for boiling on plain surface, the heat transfer performance in confined spaces was affected by four major effects, i.e. (a) thin film evaporation, (b) vapor blowing and liquid suction effect, (c) vapor leaving resistance and (d) partial dryout effect. But for boiling on micro porous coating surface, partial dryout was not found owing to the porous capillary force to keep the heating surface wet. The wetted rough porous surface also reduced the effect of thin film evaporation under the deformed bubbles. The heat transfer performance was affected majorly by vapor blowing and liquid suction effect and vapor leaving resistance only. The combination of these effects resulted in the micro porous to plain surfaces heat transfer enhancement ratio to decrease with decreasing confined space distance at low and moderate heat flux conditions but insensitive to confined space distance at high heat flux condition. Micro porous coating is a very effective boiling heat transfer enhancement treatment at low and moderate heat fluxes conditions. The enhancement ratio reduced in very narrow space confinement or at very high heat flux condition.
關鍵字(中) ★ 微多孔
★ 狹小空間
★ 熱傳增強
★ 池沸騰
關鍵字(英) ★ Micro porous coating
★ Boiling heat transfer
★ Confined space
論文目次 摘要 I
Abstract III
目 錄 VI
表 目 錄 X
圖 目 錄 XI
符 號 說 明 XIV
第一章 研究背景及目的 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 6
2.1 狹小空間內之池沸騰熱傳 6
2.1.1 狹小空間內之汽泡流動觀察 6
2.1.2 熱傳特性 9
2.2 核沸騰熱傳增強 12
2.2.1 多孔表面熱傳增強 13
2.2.2 微多孔表面熱傳增強 14
2.2.2.1 多孔層厚度對熱傳的影響 15
2.2.2.2 製作方式對熱傳的影響 17
2.3 總結 18
第三章 實驗方法 40
3.1 實驗板片的製作與基本性能測試 40
3.1.1 實驗材料參數 40
3.1.2 製作步驟 41
3.1.3 噴塗參數 42
3.2 實驗系統 42
3.2.1 環路系統 42
3.2.1.1 加熱系統 42
3.2.1.2 測試容器 43
3.2.1.3 冷凝系統 43
3.2.2 數據擷取系統 44
3.2.2.1 溫度測量 44
3.2.2.2 壓力測量 44
3.2.2.3 量測項目擷取 44
3.2.2.4 汽泡成長影像擷取 45
3.3 實驗方法 45
3.3.1 系統充填甲醇 45
3.3.2 實驗操作步驟 45
3.4 實驗數據換算 47
3.4.1 加熱瓦數 (q) 47
3.4.2 熱傳係數 (h) 47
第四章 流譜觀察 60
4.1 低熱通量 60
4.2 中熱通量 61
4.3 臨界熱通量 62
4.4 結合汽泡的震盪頻率 63
4.4.1 開放空間 63
4.4.2 狹小空間 64
第五章 結果 75
5.1 熱傳係數 75
5.1.1 平滑板表面 75
5.1.2 微多孔層厚度的影響 76
5.1.2.1 開放空間 76
5.1.2.2 狹小空間(1 mm) 77
5.1.3 狹小空間間距的影響 79
5.1.3.1 平滑板表面 79
5.1.3.2 微多孔表面(150 mm) 80
5.2 臨界熱通量 81
5.2.1 平滑板表面 81
5.2.2 微多孔層厚度的影響 81
5.2.3 狹小空間間距的影響 82
第六章 討論 96
6.1 微多孔層厚度的影響 96
6.1.1 開放空間 96
6.1.2 狹小空間 97
6.2 狹小空間間距的影響 97
6.2.1 平滑板表面 98
6.2.2 微多孔表面 100
6.2.3 微多孔表面(150 mm)對平滑板綜合比較 100
第七章 結論 113
7.1 微多孔層厚度的影響 113
7.2 狹小空間間距的影響 113
參考文獻 115
附 錄 119
A. 發表期刊與研討會論文 119
期刊論文: 119
研討會論文: 119
B. 孔隙率量測值 120
C. 熱邊界層計算 122
D. 誤差分析 123
參考文獻 Azar, K., 2002, “Advanced Cooling Concepts and Their Challenges,” The 8th International Workshop on THERMal INvestigations of ICs and Systems (Therminic), October 1-4, 2002, Madrid, Spain.
Alam, M. S., Prasad, L., Gupta, S. C., and Agarwal, V. K., 2008, “Enhanced boiling of saturated water on copper coated heating tubes,” Chem. Eng. Process., Vol. 47, pp. 159-167.
Bonjour, J., and Lallemand, M., 1998, “Flow patterns during boiling in a narrow space between two vertical surfaces,” Int. J. Multiphase Flow, Vol. 24, pp. 947-960.
Chang, J. Y., and You, S. M., 1996, “Heater orientation effects on pool boiling of micro-porous-enhanced surfaces in saturated FC-72,” ASME J. Heat Transfer, Vol. 118, pp. 937–943.
Chang, J. Y., and You, S. M., 1997a, “Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72,” Int. J. Heat Mass Transfer, Vol. 40, pp. 4437-4447.
Chang, J. Y., and You, S.M., 1997b, “Enhanced boiling heat transfer from micro-porous surfaces: effects of a coating composition and method,” Int. J. Heat Mass Transfer. Vol. 40, pp. 4449–4460.
Cieslinski, J. T., 2002, “Nucleate pool boiling in porous metallic coatings,” Exp. Therm. Fluid Sci., Vol. 25, pp. 557-564.
Collier, J. G., and Thome, J. R., 1994, Convective Boiling and Condensation, Third Edition. Oxford University Press New York. Chapter 4, pp. 148-151.
Cooper, M. G., 1984, “Saturation nucleate pool boiling - A simple correlation,” International Chemical Engineering Symposium Series, Vol. 86, pp. 785-792.
Dizon, M. B., Yang, J., Cheung, F.-B., Rempe, J. L., Suh, K. Y., and Kim, S. B., 2004, “Effects of surface coating on the critical heat flux for pool boiling from a downward facing surface,” J. Enhanced Heat Transfer, Vol. 11, pp. 133-150.
El-Genk, M. S., and Ali, A. F., 2010, “Enhanced nucleate boiling on copper micro-porous surfaces,” Int. J. Multiphase Flow, Vol. 36, pp. 780-792.
Fan, C.-F., and Yang, C.-Y., 2006, “Pool boiling of refrigerants R-134a and R-404A on porous and structured tubes – Part I, visualization of bubble dynamics,” J. Enhanced Heat Transfer, Vol. 13 pp. 85-97.
Fujita, Y., Ohta, H., Uchida, S., and Nishikawa, K., 1988, “Nucleate boiling heat transfer and critical heat flux in narrow space between rectangular surfaces,” Int. J. Heat Mass Transfer, Vol. 31, pp. 229-239.
Ishibashi, E., and Nishikawa, K., 1969, “Saturated boiling heat transfer in narrow spaces,” Int. J. Heat Mass Transfer, Vol. 12, pp. 863-893.
Katto, Y., Yokoya, S., and Teraoka, K., 1977, “Nucleate and transition boiling in a narrow space between two horizontal, parallel disk-surfaces,” Bull. JSME., Vol. 20, pp. 638-643.
Lee, M. T., Yang, Y. M., and Maa, J. R., 1992, “Nucleate pool boiling in a confined space,” Chem. Eng. Comm., Vol. 117, pp. 205-217.
Lee, M. T., Yang, Y. M., and Maa, J. R., 1995, “Boiling of mixture in a narrow space,” Chem. Eng. Comm., Vol. 134, pp. 183-194.
Li, C., and Peterson, G. P., 2007, “Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces” ASME J. Heat Transfer, Vol. 129, pp. 1465-1475.
Lu, S. M., and Chang, R. H., 1987, “Pool boiling from a surface with a porous layer,” AIChE J., Vol. 33, pp. 1813-1828.
Misale, M., Guglielmini, G., and Priarone, A., 2009, “HFE-7100 pool boiling heat transfer and critical heat flux in inclined narrow spaces,” Int. J. Refrig., Vol. 32, pp. 235-245.
Misale, M., Guglielmini, G., and Priarone, A., 2011, “Nucleate boiling and critical heat flux of HFE-7100 in horizontal narrow spaces,” Exp. Therm. Fluid Sci., Vol. 35, pp. 772-779.
Nowell, R. M., Bhavnani, S. H., and Jaeger, R. C., 1995 “Effect of Channel Width on Pool Boiling from a Microconfigured Heat Sink,” IEEE Trans. Compon. Pack. Technol., Vol. 18, pp. 534-539.
O’Connor, J. P., and You, S. M., 1995 “A painting technique to enhance pool boiling heat transfer in FC-72,” ASME J. Heat Transfer, Vol. 117, pp. 387-393.
O’Connor, J. P., You, S. M., and Price, D. C., 1995, “A dielectric surface coating technique to enhance boiling heat transfer from high power microelectronics,” IEEE Trans. Compon. Pack. Technol., Vol. 18, pp. 656-663
Passos, J. C., Hirata, F. R., Possamai, L. F. B., Balsamo, M., and Misale, M., 2004, “Confined boiling of FC-72 and FC-87 on a downward facing heating copper disk,” Int. J. Heat Fluid Flow, Vol. 25, pp. 313-319.
Passos, J. C., Silva, E. L. da, and Possamai, L. F. B., 2005, “Visualization of FC-72 confined nucleate boiling,” Exp. Therm. Fluid Sci. Vol. 30, pp. 1-7.
Saini, M., and Webb, R. L., 2003, “Heat rejection limits of air cooled plane fin heat sinks for computer cooling,” IEEE Trans. Compon. Pack. Technol., Vol. 26, pp. 71-79.
Scurlock, R. G., 1995, “Enhanced boiling heat transfer surfaces,” Cryogenics, Vol. 35, pp. 233-237.
Stutz, B., Lallemand, M., Raimbault, F., and Passos, J. C., 2009, “Nucleate and transition boiling in narrow horizontal spaces,” Heat Mass Transfer, Vol. 45, pp. 929-935.
Thome, J. R., 1990, Enhanced Boiling Heat Transfer, Hemisphere Publishing Corp., New York, pp. 28-63.
Webb, R. L., “Principles of Enhanced Heat Transfer” 2th, Taylor & Francis, New York, 2005.
Yang, C.-Y., and Fan, C.-F., 2006, “Pool boiling of refrigerants R-134a and R-404A on porous and structured surface tubes – Part II, heat transfer performance,” J. Enhanced Heat Transfer, Vol. 13, pp. 65-84.
Yang J., 2005, ‘‘Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel,’’ Ph. D thesis, Department of Mechanical Engineering, Pennsylvania State University, USA.
Yang, J., and Cheung, F.-B., 2005, “A hydrodynamic CHF model for downward facing boiling on a coated vessel,” Int. J. Heat Fluid Flow, Vol. 26, pp. 474-484.
Yao, S.-C., and Chang, Y., 1983, “Pool boiling heat transfer in a confined space,” Int. J. Heat Mass Transfer, Vol. 26, pp. 841-847.
Zhao, Y., Tsuruta, T., and Ji, C., 2003, “Experimental study of nucleate boiling heat transfer enhancement in confined space,” Exp. Therm. Fluid Sci., Vol. 28 pp. 9-16.
范智峰,2004,冷媒R-134a與R-404A在熱傳增強管上之池沸騰觀察與熱傳性能分析,國立中央大學機械工程研究所博士論文,中壢,台灣。
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2013-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明