博碩士論文 993303001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.128.168.69
姓名 王仕偉(Shih-wei Wang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 應用KOH、NaOH電解液滴定方式於WECDM加工石英玻璃之研究
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來微機電系統發展迅速,石英晶體愈做愈小,因其具有壓電效應、化學穩定性良好等優異性質,因此廣泛被應用於微機電系統之關鍵零組件。但由於其硬脆特性,若以傳統之加工方式很難在效率與精度二者之間同時兼顧。電化學放電加工是以高溫熔融並利用此高溫加速蝕刻速率的非傳統加工方法,相當適合作為加工石英之製程技術。唯此製程技術中,仍然存在著許多有待釐清且改善的問題,其中氣泡於電極表面生成時的狀態不僅影響氣膜結構的緻密性,同時為影響放電火花效率的重要因素之一;另外,氣膜受到氣泡不斷結合、脫離的影響下,使得氣膜處在此動態的環境中,穩定程度受到嚴重的考驗。有鑑於此,透過本論文的研究,逐步釐清、解析、並提供如何增加氣膜穩定性、加工效率的方法,以提升電化學放電加工之性能。
首先,在設備部分,與以往不同的是將工件裝置於主軸上,並將電解液由軸中心送入,而不是使用電解槽將工件浸泡於電解液中,這樣一來電解液會不斷更新,也會沖走因切削而產生的切屑,有助於加工;電解液濃度也會保持一定,不會隨著時間增加產生濃度變化而影響加工。另外,由於不同電解液種類、輸入電壓、電解液流量、電解液濃度及工件進給速率等,都會影響加工效率與精度,所以必須對不同參數各別調整,找出能夠達到最佳效率與精度的加工參數。
經過實驗後發現切割長度隨入電壓及電解液濃度上升而增加;隨著電解液流量及進給速度增加而減少,輔助石墨電極使切槽入口及出口處不易產生擴槽,因此平均切割寬度無明顯變化。
使用電解液滴定法進行電化學放電加工,電解液的使用量少、擴槽量小、準直性佳,切割面不會產生脆裂現象。在電解液效果部份發現,與使用加工槽浸入式加工相同,使用KOH電解液效果較使用NaOH電解液效果好。
摘要(英) In recent years the rapid development of micro-electro-mechanical systems the smaller quartz crystal to do more because of their piezoelectric effect good chemical stability excellent properties, it is widely used in micro-electromechanical systems key components. However, due to its hard and brittle characteristics terms of traditional processing methods is difficult in the efficiency and precision between both. Electrochemical discharge machining high-temperature melting and high temperature accelerated the etching rate of the non-traditional processing methods process technology quite suitable as processing of quartz. Only this process technology, there are still many pending clarification and improvement of the problem not only affects the denseness of the gas film structure wherein a state when the bubble is generated at the electrode surface at the same time as one of the important factors affecting discharge spark efficiency; addition, the gas film by bubbles constantly detachment under the influence of the gas film in this dynamic environment stability is put to severe test. In view of this through this thesis and gradually clarified resolution and how to increase the stability of the gas film the processing efficiency of the method to enhance the performance of the electrochemical discharge machining.
First, part of the device with the conventional type of apparatus the workpiece spindle and the electrolyte is fed from the axial center of the electrolytic cell instead of using the workpiece is immersed in the electrolyte so that the electrolyte is continually updated also washed away by the chips generated by cutting contribute to the processing; electrolytic solution concentration will remain constant does not increase over time produced a concentration change and the impact of processing. In addition, due to the different type of electrolyte, input voltage, electrolyte flow rate, electrolyte concentration and workpiece feed rate etc. will affect the processing efficiency and accuracy it is necessary to adjust each of the different parameters to find out to be able to achieve the best efficiency and accuracy the processing parameters.
Through experiments and found that cutting length with rising input voltage and electrolyte concentration increases; With the electrolyte flow and feed rate decreases with increasing auxiliary graphite electrodes make grooving easy to produce the inlet and outlet expansion slot, so the average cutting width without significant change.
Titration using electrolyte electrochemical discharge machining, electrolyte use less、 a small amount of expansion slots、collimation resistance, cutting surface does not produce embrittlement phenomenon. Part in the electrolyte effects found with the use of the same machining tank immersion process using KOH electrolyte was better than using NaOH electrolyte effect.
關鍵字(中) ★ 電化學放電加工
★ 電解液濃度
★ 電解液流量
★ 輸入電壓
★ 工件進給速率
關鍵字(英) ★ electrochemical discharge machining
★ electrolyte concentration
★ electrolyte flow
★ input voltage
★ workpiece feed rate
論文目次 摘 要................................................................................................................i
Abstract...............................................................................................................iii
誌 謝.............................................................................................................. v
目 錄..............................................................................................................vi
圖目錄............................................................................................................viii
表目錄...............................................................................................................x
第一章 緒論.........................................................................................................1
1-1 研究動機.................................................................................................1
1-2 文獻回顧.................................................................................................3
1-3 研究目的.................................................................................................8
第二章實驗原理...............................................................................................10
2-1 電化學放電加工原理...........................................................................10
2-1-1 電化學放電加工的放電火花產生過程....................................12
2-1-2 電化學放電加工的材料移除機制............................................14
第三章實驗材料與設備...................................................................................16
3-1 前言.......................................................................................................16
3-2 實驗設備與方法...................................................................................18
3-2-1 實驗設備....................................................................................18
3-2-2 實驗材料....................................................................................21
3-2-3 實驗步驟....................................................................................26
3-2-4 實驗參數設定............................................................................27
3-3 實驗流程...............................................................................................28
第四章結果與討論...............................................29
4-1 絕緣氣泡與石墨輔助電極對加工機制的影響...................................29
4-2 不同輸入電壓對初始加工型態的影響...............................................31
4-3 KOH 電解液對加工的影響...................................................................35
4-3-1 不同流速(電解液滴定流量)對加工的影響...............................35
4-3-2 不同濃度對加工的影響……………..........................................37
4-3-3 不同進給速度對加工的影響......................................................38
4-3-4 結論..............................................................................................40
4-4 NaOH 電解液對加工的影響.................................................................42
4-4-1 不同輸入電壓對加工的影響......................................................42
4-4-2 不同流速(電解液滴定流量)對加工的影響...............................44
4-4-3 不同濃度對加工的影響……………..........................................45
4-4-4 不同進給速度對加工的影響......................................................46
4-4-5 結論..............................................................................................48
4-5 KOH 與NaOH 對加工影響的比較.......................................................50
4-5-1 不同輸入電壓對加工影響的比較………………......................50
4-5-2 不同流速(電解液滴定流量)對加工影響的比較.......................52
4-5-3 不同電解液濃度對加工影響的比較……………......................54
4-5-4 不同進給速度對加工影響的比較..............................................56
4-5-5 結論..............................................................................................58
第五章總結論...................................................................................................59
參考文獻.............................................................................................................61
作者簡介............................................................................................................65
參考文獻 1. C.S. Taylor, “Investigation on anode discharge in electrolysis of melted sodium chloride”, Trans. Electro-chemical Society, Vol.47, pp. 301-305, 1925.
2. H. H. Kellog, “The interface observation of poles in water electrolysis”, Journal of Electrochemical Society, Vol. 97, pp.133-137, 1950.
3. H. Kurafuji and K. Suda, “Electrical discharge drilling of glass”, Ann. CIRP. Vo. 16, pp. 415-419, 1968.
4. A.B.M. Khayry and J.A. Mcgeouth, “Modelling of electrochemical arc machining by use of dynamic data systems”, Proceedings of 25th International Machine Tool Design and Research Conference, pp. 321-328, 1985.
5. Y.P. Singh, V.K. Jain, P. Kumar, D.D. Agrawal, “Machining piezoelectric (PZT) ceramics using an electrochemical spark machining (ECSM) process”, Journal of Materials Processing Technology, Vol. 58, pp. 24-31, 1996.
6. K. Allesu, A. Ghosh and M.K. Muju, “Preliminary qualitative approach of a proposed mechanism of material removal in electrical machining of glass”, Euro Journal of Mechanical Engineering, Vol. 36, pp. 202-207, 1992.
7. H. Langen, V. Fascio, R. Wüthrich and D. Viquerat, “Three-dimensional structuring of pyrex glass devices – trajectory control”, Internal Conference of European Society for Precision Engineering and Nanotechnology (EUSPEN) (Eindhoven), Vol. 2, pp. 435-438, 2002.
8. V. Raghuram, T. Pramila, Y.G. Srinivasa, K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of Materials Processing Technology, Vol. 52, pp. 301-318, 1995.
9. I. Basak, A. Ghosh, “Mechanism of spark generation during electrochemical dischargemachining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol. 62, pp. 46-53, 1996.
10. I. Basak and A. Ghosh, “Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol. 71, pp. 350-359, 1997.
11. V. K. Jain, P. M. Dixit and P. M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools & Manufacture, Vol. 39, pp. 165-186, 1999.
12. B. Bhattacharyya, B. N. Doloi and S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials”, Journal of Materials Processing Technology, Vol. 95, pp. 145-154, 1999.
13. C. T. Yang, S. S. Ho and B. H. Yan, “Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM) ”, Key Engineering Material. Vol. 196, pp. 149-166, 2001.
14. H. J. Lim, Y. M. Lim, S. M. Kim and Y. K. Kwak, “Self-aligned micro tool and electrochemical discharge machining (ECDM) for ceramic materials”, Proc. SPIE, Vol. 4416, pp. 348-353, 2001.
15. R. Kulkarni and G.K. Sharan, “An experimental study of discharge mechanism in electrochemical discharge machining”, International Journal of Machine Tools & Manufacture, Vol. 42, pp. 1121–1127, 2002.
16. H. Langen, V. Fascio, R. Wüthrich and D. Viquerat, “Three-dimensional structuring of Pyrex glass devices - trajectory control”, International Conference of European Society for Precision Engineering and Nanotechnology (EUSPEN) (Eindhoven), Vol. 2, pp. 435-438, 2002.
17. V. Fascio, H.H. Langen, H. Bleuler, Ch. Comninellis, “Investigations of the spark assisted chemical engraving”, Electrochemistry Communications, Vol. 5, pp. 203–207, 2003.
18. W.Y. Peng, Y.S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials”, Journal of Materials Processing Technology, Vol. 149, pp. 363–369, 2004.
19. T.K.K.R. Mediliyegedara, A.K.M. De Silva, D.K. Harrison, J.A. McGeough, “An intelligent pulse classification system for electro-chemical dischargemachining (ECDM)—a preliminary study”, Journal of Materials Processing Technology, Vol. 149, pp. 499–503, 2004.
20. R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. H. Mandin and G. Picard, “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, 15 S268-75 (2005).
21. R. Wüthrich, U. Spaetler and H. Bleuler, “The current signal in spark assisted chemical engraving (SACE), what does it tell us? ”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 779-785, 2006.
22. D. J. Kim, Y Ahn, S. H. Lee and Y. K. Kin, “Voltage pulse frequency and duty ratio effects in and electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools & Manufacture, Vol. 46 pp. 1064-1067, 2006.
23. R. Wüthrich, B. Despont, P. Maillard and H Bleuler, “Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration”, Journal of Micromechanics and Microengineering, Vol. 16, N28, 2006.
24. C. T. Yang, S. L. Song, B. H. Yan and F. Y. Huang, “Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 2044-2050, 2006.
25. W. Jonathan, J. Amol, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 403-409, 2006.
26. R. Wüthrich, L.A. Hof, “The gas film in spark assisted chemical engraving (SACE)—A key element for micro-machining applications”, International Journal of Machine Tools & Manufacture, Vol. 46 , pp. 828–835, 2006.
27. Z.P, Zheng, H.C. Su, F.Y. Huang and B.H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 265-272, 2007.
28. Sanjay K. Chak, and P. Venkateswara Rao, “Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply”, International Journal of Machine Tools & Manufacture, Vol. 47 pp. 2061–2070, 2007.
29. M.S. Han, B.K. Min, and S.J. Lee, “Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte”, Journal of Materials Processing Technology, Vol. 191, pp. 224–227, 2007.
30. M. Jalali, P. Maillard and R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol. 19, 045001, 2008.
31. M. Mousa, A. Allagui, H. D. Ng and R. Wüthrich, “The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling”, Journal of Micromechanics and Microengineering, Vo.19, 015010, 2009.
32. Z.P. Zheng, J.K. Lin, F.Y. Huang and B.H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, Vol.18, 025014, 2009.
33. M. S. Han, B. K. Min and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte”, Journal of Micromechanics and Microengineering, Vol. 19, 065004, 2009.
34. X.D. Cao, B.H. Kim and C.N. Chu, “Micro-structuring of glass with features
less than 100_m by electrochemical discharge machining”, Precision Engineering, Vol. 33, pp. 459–465, 2009.
指導教授 顏炳華(Piin-hwa Yan) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明