博碩士論文 100323029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.144.255.116
姓名 何嘉哲(Jia-Jhe He)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 在電解液中添加粉末對電化學放電線切割加工特性的影響
(The effect of electrolyte powder-mixed on Wire Electrochemical Discharge Machining)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗在加工時增加了電解液更新的效果,使電解液成液滴狀包覆石英玻璃而向下滴落,可避免電解氣泡堆積於加工出入口處影響氣膜的穩定性及產生擴槽現象;以提高加工效率。雖然其具有不錯的加工特性,但是其加工過後溝槽的表面精度較差。因此在電解液中分別添加了石墨粉和碳化矽磨粒,利用送線將磨粒帶入細微溝槽中進行加工,期望能改善其加工後的表面精度並探討添加磨粒後是否會有附加其他類型的加工方式以及加工特性。
本研究所使用的線電極為線徑φ0.15mm的黃銅線,選用的工件為厚度1.1mm的石英玻璃。在實驗中選擇了加工電壓、進給速度與電解液流量來對電化學放電線切割加工的加工特性作一系列的討論。最後可由實驗結果得知,加工電壓的大小會直接影響到加工深度及切槽精度。進給速度為f=300 μm/min時,在該速率中放電能量與材料移除搭配適當且線電極不會壓破絕緣氣膜,會得到較好的加工品質。在電解液流量為4 c.c/min時,電解液反應速度能充分補充於加工區域,使得絕緣氣膜穩定,加工速率較佳。另外添加石墨粉會使放電能量分散,可穩定放電時的電流以及添加碳化矽磨粒所增加的研磨機制皆可使得溝槽表面粗造度降低、擴槽量變小。
摘要(英) In this experiment, the process is added with a new effect of the electrolytic solution by letting the electrolytic solution to coat on a quartz glass in the shape of a droplet while dripping down, in order to avoid the bubbles released during the electrolysis accumulating at the inlet and outlet of the processing area and affecting the gas film stability and developing slit expansion phenomenon, therefore, to increase the process efficiency. Although the process has pretty good features, however, the surface of the slit is less refined after the process. Therefore, graphite powder and silicon carbide abrasive granules are added separately in the electrolytic solution. Using transport lines to bring the granules into the thin fine slit to perform the polishing process, hopefully to improve the surface fineness after the polishing process and to investigate whether, after adding the granules, other types of process and process features can be added.
The wire electrode used in this study is a brass wire with φ0.15mm in diameter; the selected work piece is the quartz glass of 1.1mm thickness. In the experiment, the process voltage, the feed rate and the electrolytic solution flow volume are selected for a series of discussions in relevant to the process feature of electrochemical discharge wire cutting process. Finally, based on the experimental results, the scale of the process voltage directly impact the processing depth and slit fineness. When the feed rate (f) = 300 μm/min; the electrical energy discharged and materials removed under such feed rate are arranged appropriately; and the wire electrode does not crush the insulating gas film, a better process quality is obtained. When the electrolytic solution flow volume is equal to 4 c.c/min, the electrolytic solution response rate is able to fully supplement the process area in order to maintain the gas film stability and to achieve a better process efficiency. The graphite powder can diversify the electrical energy discharged and stabilize the electrical current during the electrical energy discharge. In addition, the accession of the polishing mechanism by adding silicon carbide abrasive granules can reduce the surface roughness of the slit and the expansion of the slit.
關鍵字(中) ★ 碳化矽
★ 石墨粉
★ 電化學放電
關鍵字(英) ★ silicon carbide
★ graphite powder
★ Electrochemical Discharge Machining
論文目次 摘要.............................................................................................................i
Abstract.....................................................................................................ii
誌謝...........................................................................................................iv
目錄............................................................................................................v
圖目錄.....................................................................................................viii
表目錄.......................................................................................................xi
第一章 緒論..............................................................................................1
1-1 研究動機......................................................................................1
1-2 文獻回顧......................................................................................3
1-2-1探討電化學放電加工原理及加工機制的相關文獻........3
1-2-2探討電化學放電加工製程應用與加工特性的相關文....5
1-3 研究目的......................................................................................8
第二章 實驗原理......................................................................................9
2-1 電化學放電加工原理..................................................................9
2-1-1 電化學放電加工的放電火花產生過程.........................11
2-1-2 電化學放電加工的材料移除機制.................................13
第三章 實驗設備與方法........................................................................17
3-1 實驗材料....................................................................................17
3-1-1 電解液.............................................................................17
3-1-2 黃銅線電極.....................................................................20
3-1-3 石墨輔助電極.................................................................21
3-1-4 工件材料.........................................................................22
3-1-5 石墨粉.............................................................................23
3-1-6 碳化矽.............................................................................24
3-2 實驗設備....................................................................................25
3-2-1 電化學放電線切割設備.................................................25
3-2-2 顯微量測系統.................................................................27
3-2-3 去離子水系統.................................................................27
3-1-4 超音波洗淨機.................................................................27
3-1-5 掃描式電子顯微鏡.........................................................27
3-1-6 示波器.............................................................................28
3-1-7 電流測試探棒.................................................................28
3-1-8 表面真空蒸鍍機.............................................................28
3-1-9 精密電子天平.................................................................28
3-1-10 表面粗糙度儀...............................................................28
3-3 實驗流程....................................................................................34
3-4 實驗參數設定............................................................................35
3-5 實驗步驟....................................................................................36
第四章 實驗結果與討論........................................................................37
4-1 擴槽量........................................................................................40
4-1-1 不同加工電壓對擴槽量之影響.....................................41
4-1-2 不同進給速度對擴槽量之影響.....................................42
4-1-3 不同電解液流量對擴槽量之影響.................................44
4-1-4 粉末濃度對擴槽量之影響.............................................45
4-2 加工深度....................................................................................49
4-2-1 不同加工電壓對加工深度之影響.................................50
4-2-2 不同進給速度對加工深度之影響.................................55
4-2-3 不同電解液流量對加工深度之影響.............................58
4-2-4 粉末濃度對加工深度之影響.........................................61
4-3 粗糙度........................................................................................65
4-3-1 不同加工電壓對粗糙度之影響.....................................66
4-3-2 不同進給速度對粗糙度之影響.....................................68
4-3-3 不同電解液流量對粗糙度之影響.................................70
4-3-4 粉末濃度對粗糙度之影響.............................................72
4-4 有無添加磨粒的加工特性比較................................................75
第五章 結論............................................................................................85
參考文獻..................................................................................................88
參考文獻 [1] C.S. Taylor, “Investigation on anode discharge in electrolysis of melted sodium chloride”, Trans. Electro-chemical Society, Vol.47, pp. 301-305, 1925.
[2] H. H. Kellog, “The interface observation of poles in water electrolysis”, Journal of Electrochemical Society, Vol. 97, pp.133-137, 1950.
[3] H. Kurafuji and K. Suda, “Electrical discharge drilling of glass”, Ann. CIRP. Vo. 16, pp. 415-9, 1968.
[4] A.B.M. Khayry and J.A. Mcgeouth, “Modelling of electrochemical arc machining by use of dynamic data systems”, Proceedings of 25th International Machine Tool Design and Research Conference, pp. 321-328, 1985.
[5] Y.P. Singh, V.K. Jain, P. Kumar, D.D. Agrawal, “Machining piezoelectric (PZT) ceramics using an electrochemical spark machining (ECSM) process”, Journal of Materials Processing Technology, Vol. 58, pp. 24-31, 1996.
[6] K. Allesu, A. Ghosh and M.K. Muju, “Preliminary qualitative approach of a proposed mechanism of material removal in electrical machining of glass”, Euro Journal of Mechanical Engineering, Vol. 36, pp. 202-207, 1992.
[7] H. Langen, V. Fascio, R. Wüthrich and D. Viquerat, “Three-dimensional structuring of pyrex glass devices – trajectory control”, Internal Conference of European Society for Precision Engineering and Nanotechnology (EUSPEN) (Eindhoven), Vol. 2, pp. 435-438, 2002.
[8] I. Basak, A. Ghosh, “Mechanism of spark generation during electrochemical dischargemachining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol. 62, pp. 46-53, 1996.
[9] I. Basak and A. Ghosh, “Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol. 71, pp. 350-9, 1997.
[10] V. K. Jain, P. M. Dixit and P. M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools & Manufacture, Vol. 39, pp. 165-86, 1999.
[11] C. T. Yang, S. S. Ho and B. H. Yan, “Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM) ”, Key Engineering Material. Vol. 196, pp. 149-66, 2001.
[12] R. Kulkarni and G.K. Sharan, “An experimental study of discharge mechanism in electrochemical discharge machining”, International Journal of Machine Tools & Manufacture, Vol. 42, pp. 1121–1127, 2002.
[13] V. Fascio, H.H. Langen, H. Bleuler, Ch. Comninellis, “Investigations of the spark assisted chemical engraving”, Electrochemistry Communications, Vol. 5, pp. 203–207, 2003.
[14] T.K.K.R. Mediliyegedara, A.K.M. De Silva, D.K. Harrison, J.A. McGeough, “An intelligent pulse classification system for electro-chemical dischargemachining (ECDM)—a preliminary study”, Journal of Materials Processing Technology, Vol. 149, pp. 499–503, 2004.
[15] R. Wüthrich, U. Spaetler and H. Bleuler, “The current signal in spark assisted chemical engraving (SACE), what does it tell us? ”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 779-85, 2006.
[16] M. Jalali, P. Maillard and R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol. 19, 045001, 2008.
[17] V. Raghuram, T. Pramila, Y.G. Srinivasa, K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of Materials Processing Technology, Vol. 52, pp. 301-318, 1995.
[18] B. Bhattacharyya, B. N. Doloi and S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials”, Journal of Materials Processing Technology, Vol. 95, pp. 145-54, 1999.
[19] H. J. Lim, Y. M. Lim, S. M. Kim and Y. K. Kwak, “Self-aligned micro tool and electrochemical discharge machining (ECDM) for ceramic materials”, Proc. SPIE, Vol. 4416, pp. 348-53, 2001.
[20] H. Langen, V. Fascio, R. Wüthrich and D. Viquerat, “Three-dimensional structuring of Pyrex glass devices - trajectory control”, International Conference of European Society for Precision Engineering and Nanotechnology (EUSPEN) (Eindhoven), Vol. 2, pp. 435-8, 2002.
[21] W.Y. Peng, Y.S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials”, Journal of Materials Processing Technology, Vol. 149, pp. 363–369, 2004.
[22] R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. H. Mandin and G. Picard, “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, 15 (2005) S268-75.
[23] D. J. Kim, Y Ahn, S. H. Lee and Y. K. Kin, “Voltage pulse frequency and duty ratio effects in and electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools & Manufacture, Vol. 46 pp. 1064-1067, 2006.
[24] R. Wüthrich, B. Despont, P. Maillard and H Bleuler, “Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration”, Journal of Micromechanics and Microengineering, Vol. 16, N28, 2006.
[25] C. T. Yang, S. L. Song, B. H. Yan and F. Y. Huang, “Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 2044-2050, 2006.
[26] W. Jonathan, J. Amol, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 403-409, 2006.
[27] R. Wüthrich, L.A. Hof, “The gas film in spark assisted chemical engraving (SACE)—A key element for micro-machining applications”, International Journal of Machine Tools & Manufacture, Vol. 46 , pp. 828–835, 2006.
[28] Z.P, Zheng, H.C. Su, F.Y. Huang and B.H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process”, Journal of Micromechanics and Microengineering, Vol. 17, pp. 265-272, 2007.
[29] Sanjay K. Chak, and P. Venkateswara Rao, “Trepanning of Al2O3 by electro-chemical discharge machining (ECDM) process using abrasive electrode with pulsed DC supply”, International Journal of Machine Tools & Manufacture, Vol. 47 pp. 2061–2070, 2007.
[30] M.S. Han, B.K. Min, and S.J. Lee, “Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte”, Journal of Materials Processing Technology, Vol. 191, pp. 224–227, 2007.
[31] M. Mousa, A. Allagui, H. D. Ng and R. Wüthrich, “The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling”, Journal of Micromechanics and Microengineering, Vo.19, 015010, 2009.
[32] Z.P. Zheng, J.K. Lin, F.Y. Huang and B.H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, Vol.18, 025014, 2009.
[33] M. S. Han, B. K. Min and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte”, Journal of Micromechanics and Microengineering, Vol. 19, 065004, 2009.
[34] X.D. Cao, B.H. Kim and C.N. Chu, “Micro-structuring of glass with features less than 100_m by electrochemical discharge machining”, Precision Engineering, Vol. 33, pp. 459–465, 2009.
[35] V. Fascio, R. Wüthrich, H. Bleuler, “ Spark assisted chemical engraving in the light of electrochemistry”, Electrochimica Acta, Vol. 49, pp.3997-4003, 2004.
[36] 林孟璋,「派熱司玻璃材料之電化學線切割放電加工特性之研究」,國立中央大學,碩士論文,2001。
[37] 楊景棠,「微電化學放電加工法應用於硼矽玻璃的精微加工及精度改善之研究」,國立中央大學,博士論文,2007。
[38] 鄭志平,「微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究力」,國立中央大學,博士論文,2008。
指導教授 顏炳華(Piin-Hwa Yan) 審核日期 2013-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明