參考文獻 |
[1] R.E. Reason, “Progress in the appraisal of surface topography during the first half-century of instrument development ”, Wear, Vol 57, pp. 1-16, 1979.
[2] D.J. Whitehouse, “Stylus contact method for surface metrology in the ascendancy ”, Meas. Control, Vol 31, pp. 48-50, 1998.
[3] A. López, D. Acosta, AI. Martínez and J. Santiago, “Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity ”, Powder Technol., Vol 202, pp. 111-117, 2010.
[4] H. Toupet, F. Marrec Le, J. Holc, M. Kosec, P. Vilarhino and M.G. Karkut, “Growth and thermal stability of epitaxial BiFeO3 thin films ”, J. Magn. Magn. Mater., Vol 321, pp. 1702-1705, 2009.
[5] Y. Masuda, T. Sugiyama, H. Lin, W.S. Seo and K. Koumoto, “Selective deposition and micropatterning of titanium dioxide thin film on self-assembled monolayers ”, Thin Solid Films, Vol 382, pp.153-157, 2001.
[6] D.J. Whitehouse, Comparison between stylus and optical methods for measuring surfaces, Ann. CIRP , Vol 37, pp.649–653, 1988.
[7] Y.C. Shin, S.J. Oh, S.A. Coker, Surface roughness measurement by ultrasonic sensing for in-process monitoring, Trans. ASME J. Eng. Ind. , Vol 117 , pp.439–447, 1995.
[8] R. Brodmann, O. Werke, G. Rodenstock, An optical instrument for measuring the surface roughness in production control, Ann. CIRP, Vol 33, pp.403–406 , (1984).
[9] H. J. Tiziani, “Optical methods for precision measurements ”,Opt. Quant. Electron., Vol 21, pp. 253-282, 1989.
[10] U. Persson, “Real time measurement of surface roughness on ground surfaces using speckle-contrast technique”, Opt. Las. Eng., Vol 17, pp. 61-67, 1992.
[11] U. Persson, “Measurement of surface roughness on rough machined surfaces using spectral speckle correlation and image analysis ”, Wear, Vol 160, pp. 221-225, 1993.
[12] P.L. Wong and K.Y. Li, “In-process roughness measurement on moving surfaces ”, Opt. Laser Technol., Vol 31, pp. 543-548, 1999.
[13] C.J. Tay, S.H. Wang, C. Quan, and H.M. Shang, “In situ surface roughness measurement using a laser scattering method ”, Opt. Commun. Vol 218, pp. 1-10, 2003.
[14] L. C. Leonard and V. Toal,“Roughness measurement of metallic surfaces based on the laser speckle contrast method,”Optics and Lasers in Engineering, Vol 30, pp. 433-440, 1998.
[15] E. Kayahan, H. Oktem, F. Hacizade, H. Nasibov, and O. Gundogdu, “Measurement of surface roughness of metals using binary speckle image analysis ”, Tribol. Int., Vol 43, pp. 307-311, 2010.
[16] L. C. Leonard, V. Toal, “Roughness measurement of metallic surfaces based on the laser speckle contrast method ”, Opt. Lasers Eng., Vol 30, pp. 433-440, 1998.
[17] H.W. Babcock, “The possibility of compensating astronomical Seeing ”, Publ. Astron. Soc. Pac., Vol 65, pp. 229-236, 1953.
[18] S.R. Restaino, J.R. Andrews, T. Martinez, F. Santiago and D.V.Wick, “Adaptive optics using MEMS and liquid crystal devices ”, J. Opt. A-Pure Appl. Opt., Vol 10, 064006(5pp), 2008.
[19] 葉玉堂、饒建珍、肖峻,幾何光學,五南圖書,台北市,民國九十七年。
[20] S.H. Baik, S.K. Park, C.J. Kim and B. Cha, “A center detection algorithm for Shack-Hartmann wavefront sensor ” , Opt. Las. Technol., Vol 39, pp. 262-267, 2007.
[21] Q. Mu, “Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye ”, Opt. Lett., Vol 15, pp. 1946-1953, 2007.
[22] L.A. Thompson, “Adaptive Optics in Astronomy ” , Phys. Today, Vol 47, pp. 24-31, 1994.
[23] J.M. Girkin, S. Poland and A. J. Wright, “Adaptive optics for deeper imaging of biological samples ”, Curr. Opin. Biotechnol., Vol 20, pp. 106-110, 2009.
[24] C. Li, M. Xia, B. Jiang, Q.Mu, S.Chen and L. Xuan, “Retina imaging system with adaptive optics for the eye with or without myopia ”, Opt. Commun., Vol 282, pp.1496-1500, 2009.
[25] T. Shirai, “Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging ”, Appl. Optics, Vol 4, pp.4013-4023 2002.
[26] Y.K. Fuh, K.C. Hsu, M.X. Lin and J.R. Fan, “Adjustable fluidic lenses for correcting piston/defocus/astigmatism aberrations induced by mems deformable mirrors ”, Microw. Opt. Technol. Lett., Vol 54, pp. 1701-1705 2012.
[27] Y.K. Fuh, K.C. Hsu, M.X. Lin and J.R. Fan, “Characterization of adjustable fluidic lenses and capability for aberration correction of defocus and astimatism ”, Optik-Int. J. Light Electron Opt. 2012.
[28] Y.K. Fuh and M.X. Lin ,“Characterization of adjustable fluidic lenses and capability for aberration correction of defocus and astimatism ”, Opt. Commun., 2013 Accepted.
[29] Y.K. Fuh, K.C. Hsu and J.R. Fan, “Roughness measurement of metals using a modified binary speckle image and adaptive optics ”, Opt. Las. Eng., Vol 50, pp.312-316, 2012.
[30] Y.K. Fuh, K.C. Hsu and J.R. Fan, “Rapid in-process measurement of surface roughness using adaptive optics ”, Opt. Lett., Vol 37, pp. 848-50, 2012.
[31] Y.K. Fuh and C.H. Wang, “Adaptive optics integrated surface roughness measurement of sputtered Pt film on silicon substrate”, Microw. Opt. Technol. Lett., Vol.55, pp. 2055-2059, 2013.
[32] Y.K. Fuh and J.R. Fan, “ Experimental investigation of a flowing fluid layer on metal surface roughness measurement and aberration correction using adaptive optics ”, Opt. Rev., 2013 Accepted.
[33] Thorlabs,“Adaptive Optics 101: Overview, Tech Review, And Applications,” http://www.thorlabs.hk/images/TabImages/AO_101_White_Paper.pdf
[34] K.M. Hamson, “ Adaptive Optics and vision,” J. Mod. Optic, Vol 55, pp. 3425-3467, 2008.
[35] Thorlabs, “Adaptive Optics Kit User guide ”, http://www.thorlabs.com/Thorcat/18100/18182-D02.pdf
[36] J. E. Lim, J. K. Jeong, K. H. Ahn, H. J. Kim, C. S. Hwang, "Microstructural characterization of sputter-deposited Pt thin film electrode," J. Mater. Res., Vol. 19, No. 2, 2004
[37] M. A. Younis, " On Line Surface Roughness Measurements using image processing towards an adaptive control," Computers ind. Eng ,Vol. 35, pp. 49-52, 1998.
[38] K I Jolic, C R Nagarajah, W Thompson, " Non-contact, optically based measurement of surface roughness of ceramics," Meas. Sci, Technol. , Vol.5, pp.671-684, 1994.
[39] S. Wang, Y. Tian, C. J. Tay, C. Quan, " Development of a laser-scattering-based probe for on-line measurement of surface roughness.," Appl. Opt. ,Vol. 42, pp.1318-1324 , 2003.
[40] L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, T. K. Lee, "Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile," Opt. Las. in Eng., Vol. 48, pp.774-778, 2010.
[41] U. Persson, "Surface roughness measurement on machined surfaces using angular speckle correlation," J. Mater. Process. Technol., Vol. 180, pp.233-238, 2006.
[42] K. C. Hsu, Y. K. Fuh, "A Novel In Situ Roughness Measurement Based on Spatial Average Analysis of Binary Speckle Image," Adv. Mat. Res., Vol. 154, pp.1125-1130, 2011.
[43] C. J. Tay, S. H. Wang, C. Quan, B. L. Ng, K. C. Chan, "Surface roughness investigation of semi-conductor wafers," Opt. Las. Technol., Vol. 36, pp.535-539,(2004).
[44] C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, J. Lin, Z. Liu, "37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory," Chin. Opt. Lett., Vol. 8, pp.966-968, 2010.
[45] G. Shi, Y. Dai, L. Wang, Z. Ding, X. Rao, Y. Zhang, "Adaptive optics optical coherence tomography for retina imaging," Chin. Opt. Lett., Vol. 6, pp.424-425, 2008.
[46] C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, P. Artal, "Hybrid adaptive-optics visual simulator," Opt. Lett., Vol. 35, pp.196-198, 2010.
[47] Y. K. Fuh, K. C. Hsu, M. X. Lin, J. R. Fan, ,M X. Lin,” Induced aberrations by combinative convexconcave interfaces of refractive-index-mismatch and capability of adaptive optics correction”, Microw. Opt. Technol. let., Vol. 53 , pp.2610-2615, 2011.
[48] H. Y. Kim, Y. F. Shen, J. H. Ahn, "Development of a surface roughness measurement system using reflected laser beam," J. Mater. Process. Technol., Vol. 130-131, pp.662-667, 2002.
[49] C. Kuo and C. Chao, "Rapid optical measurement of surface roughness of polycrystalline thin films," Opt. Las. in Eng., Vol. 48, pp.1166-1169, 2010.
[50] C. Kuo and Y. Chen, "A new method to characterizing surface roughness of TiO2 thin films," Opt. Las. in Eng., Vol. 49, pp.410-414, 2011.
[51] Wang W, Wong PL, Luo JB, Zhang Z. "A new optical technique for roughness measurement on moving surface, " Tribo. Int. , Vol. 31, pp.281, 1998.
[52] C. Kuo. "Surface roughness characterization of Al-doped zinc oxide thin films using rapid optical measurement, " Opt. Las. in Eng., Vol. 49, pp.829-832, 2011.
[53] Luo, J. B., Wen, S. Z. and Huang, P. "Thin film lubrication. Part I: The transition between EHL and thin film lubrication, " Wear, Vol. 194, pp.107–115, 1996.
[54] P. Huang, JB Luo, S. Wen, "Nano-film thickness measuring apparatus NGY-2 (in Chinese), " J. Tribol., Vol.14, pp.175–179,1994.
[55] L. Xian, L. Zheng, "A new method for the experimental investigation of contacts in mixed lubrication, " Wear, Vol.132, pp.221–233, 1989.
[56] Whitehouse D J 2003 Handbook of Surface and Nanometrology (Bristol: Institute of Physics Publishing)
[57] M. Hattori, S. Komatsu. "Real-time Adaptive Optics with a Twisted Nematic Liquid Crystal Light Modulator Controlled by the Wave Front Reconstruction Sensor". Opt. Rev., Vol. 9, pp.126-31, 2002.
[58] Y. K. Fuh, M. X. Lin, S. Lee, Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,"Opt. Las. in Eng., Vol. 50 , pp.1677-1682, 2012.
[59] Y. K. Fuh, M. X. Lin, " Adaptive optics correction of a tunable fluidic lens for ophthalmic applications, " Opt. Commun., 2013, Accepted.
[60] T. Kowalewski, S. NSKI and S. Barral, "Experiments and modelling of electrospinning process," Tech. Sci., Vol. 53, 2005.
[61] F. L. Zhou, R. H. Gong , I. Porat, "Needle and needleless electrospinning for nanofibers,"J Appl. Polym. Sci., Vol.115, pp.2591, 2010.
[62] K. Gao, X. Hu, C. Dai and T. Yi, "Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells," Mat. Sci. Engin.:B, Vol. 131, pp.100, 2006.
[63] V. Aravindan, P. Vickraman, A. Sivashanmugam, R. Thirunakaran and S. Gopukumar, " LiFAP-based PVdF–HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell," Appl. Phys. A, Vol.97, pp. 811, 2009.
[64] D. Li, M. W. Frey, Y. L. Joo, " Characterization of nanofibrous membranes with capillary flow porometry," J. of Mem. Sci., Vol. 286, pp.104–114, 2006.
[65] M. Ziabari, V. Mottaghitalab, S. T. McGovern, A. K. Haghi, " A New Image Analysis Based Method for Measuring Electrospun Nanofiber Diameter," Nanoscale Res. Lett., Vol. 2, pp.597–600, 2007. |