參考文獻 |
[1] B. Schechtman, “The role of future magnetic tape technology for digital archive, preservation and sustainability,” ISIC Digital Archive, Preservation and Sustainability Workshop, 2008.
[2] N. Mori, Y. Akamatsu, and K. Okamura, “Hydrodynamic bearing unit,” US Patent6981797, 2006.
[3] M. Feng, and T. Kenjo, “Friction and wear of spindle motor hydrodynamic bearings for information storage systems during startup and shutdown,” Microsyst. Technol., vol. 13, pp. 987-997, 2007.
[4] G. H. Jang, S. J. Park, C. S. Kim, and J. H. Han, “Investigation of the electromechanical variables of the spindle motor and the actuator of a HDD due to positioning and free fall,” Microsyst. Technol., vol. 13, pp.797-809 , 2007.
[5] X. Lu, and M. M. Khonsari, “An experimental investigation of dimple effect on the Stribeck curve of journal bearings,” Tribol Lett, vol.27, pp. 169-176 , 2007.
[6] 劉建聖、林柏衡、卓英吉和張裕修, “高倍速薄型化HD-DVD 主軸馬達開發技術報告,” 工業技術研究院, 2006.
[7] D. Bonneau and J. Absi, “Analysis of aerodynamic journal bearings with small number of herringbone grooves by finite element method,” ASME J. Tribol., vol. 116(4), pp. 698-704, 1994.
[8] N. Zirkelback and L. S. Andrés, “Finite element analysis of herringbone groove journal bearings: a parametric study,” ASME J. Tribol., vol. 120, pp. 234-240, 1998.
[9] Y. Zang and M. R. Hatch, “Analysis of coupled journal and thrust hydrodynamic bearing using finite volume method,” ASME Advances in Information Storage and Processing System, vol. 1, pp. 71-79, 1995.
[10] M. Rahman and H. Leuthoid, “Computer simulation of a coupled journal and trust hydrodynamic bearing using a finite element method,” Proceedings of 25th Annual Symposium Incremental Motion Control Systems and Devices, pp. 103-112, 1996.
[11] G. H. Jang and D. I. Chang, “Analysis of a hydrodynamic herringbone grooved journal bearing considering cavitation,” ASME J. Tribol., vol. 122, pp. 103-109, 2000.
[12] G. H. Jang and J. W. Yoon, “Nonlinear dynamic analysis of a hydrodynamic journal bearing considering the effect of a rotating or stationary herringbone groove,” ASME J. Tribol., vol. 124, pp. 297-304, 2002.
[13] G. H. Jang and J. W. Yoon, “Stability analysis of a hydrodynamic journal bearing with rotating herringbone grooves,” ASME J. Tribol., vol.125, pp. 291-300, 2003.
[14] W. Junmei, W. Jiankang, T. S. Lee, and C. Shu, “A numerical study of cavitation foot-prints in liquid-lubricated asymmetrical herringbone grooved journal bearings,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 12(5), pp. 518-540, 2002.
[15] C. C. Wang, H.T. Yau, M. J. Jang, and Y. L. Yeh, “Theoretical analysis of the non-linear behavior of a flexible rotor supported by herringbone grooved gas journal bearings,” Tribol. Int., vol. 40, pp. 533-541, 2007.
[16] S. Kango, D. Singh, and R. K. Sharma, “Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing,” Meccanica, vol. 47, pp. 469-482, 2012.
[17] X. K. Li, “An analysis of journal orbits for nonlinear dynamic bearing systems”, Theor. Comput. Fluid Dyn., vol.13, pp. 209-230, 1999.
[18] K. M. Jung and G. H. Jang, “Axial shock-induced motion of the air-oil interface of fluid dynamic bearings of a non-operating hard disk drive,” IEEE Trans. Magn., vol. 47, no.7, pp. 1911 - 1917, 2011.
[19] C. Y. Chen, R. H. Yen, and C. C. Chang, “Spectral element analysis of herringbone -grooved journal bearings with groove–ridge discontinuity,” Int. J. Numer. Methods Fluids, vol. 66, pp. 1116-1131, 2011.
[20] C. C. Wang, “Bifurcation and nonlinear dynamic analysis of united gas-lubricated bearing system,” Computers and Mathematics with Applications, vol. 64, pp. 729-738, 2012.
[21] J. H. Vohr and C. Y. Chow, “Characteristics of herringbone-grooved gas-lubricated journal bearings,” ASME J. Basic Eng., vol. 87(3), pp. 558-569, 1965.
[22] M. Sahu, M. Sarangi, and B. C. Majumdar, “Thermo-hydrodynamic analysis of herringbone grooved journal bearings,” Tribol. Int., vol. 39, pp. 1395-1404, 2006.
[23] J. M. Miao, B. H. Chang., and P. H. Chen, “Numerical predictions of a flow fField in a hydrodynamic journal bearing with herringbone microgrooves,” Prog. Comput. Fluid Dyn., vol. 8, no. 7/8, pp. 486-495, 2008.
[24] A. C. Bannwart, K. L. Cavalca, G. B. Daniel, “Hydrodynamic bearings modeling with alternate motion,” Mech. Res. Commun., vol. 37, pp. 590-597, 2010.
[25] S. Uhkoetter, SAD. Wiesche, M. Kursch, and C. Beck, “Development and validation of a three-dimensional multiphase flow computational fluid dynamics analysis for journal bearings in steam and heavy duty gas turbines,” J. Eng. Gas Turbines Power, vol. 134, pp. 102504-1-102504-8, 2012.
[26] H. W. Kim, G. H. Jang, and H. J. Ha, “A generalized Reynolds equation and its perturbation equations for fluid dynamic bearings with curved surfaces,” Tribology International, vol. 50, pp. 6-15, 2012.
[27] H. Hashimoto, M. Ochiai, and Y. Sunami, “Robust optimum design of fluid dynamic bearing for hard disk drive spindle motors,” ASME J. Tribol., vol. 134, pp. 041102-1-041102-11, 2012.
[28] G. G. Hirs, “The load capacity and stability characteristics of hydrodynamic groove journal bearings,” ASLE Transactions, vol. 8, pp. 296-305, 1965.
[29] S. W. Lo and S. F. Tsai, “FEA study on electromagnetic forming of hydrodynamic herringbone-groove bearing for high speed miniature motors,” J. Chin. Soc. Mech. Eng., vol. 29(2), pp. 139-147, 2008.
[30] T. Hirayama, N. Yamaguchi, S. Sakai, N. Hishida, T. Matsuoka, and H. Yabe, “Optimization of groove dimensions in herringbone-grooved journal bearings for improved repeatable run-out characteristics,” Tribol. Int., vol. 42(5), pp. 675-681, 2009.
[31] Y. S. Ihn, S. K. Kim, D. Oh, M. E. Kim, and J. C. Koo, “Non-contact measurement method of mechanical stiffness for high revolutionary speed precision fluid dynamic bearing rotors,”Microsyst Technol, vol. 16, pp. 233-240, 2010.
[32] B. H. Chang, “Experimental studies on dynamic coefficients and stability analysis of an impeller-spindle with herringbone-grooved journal bearing,” National Taiwan University, PhD Dissertation , 2011.
[33] B. H. Chang, P. H. Chen, and D. S. Lee, “Experimental stability study on herringbone microgrooved journal bearing in an impeller spindle,” J. Mech., vol. 28, pp. 123-133, 2012.
[34] S. Naïmi, M. Chouchane,and J. L. Ligier, “Steady state analysis of a hydrodynamic short bearing supplied with a circumferential groove,” Comptes Rendus Mecanique, vol. 338, pp. 123-133, 2012.
[35] C. S. Liu, P. D. Lin, and M. C. Tsai, “A miniature spindle motor with fluid dynamic bearings for portable storage device applications,” Microsyst Technol,, vol. 15, pp. 338-349, 2010.
[36] C. S. Liu and P. D. Lin, “Analysis and validations of fluid dynamic bearing for spindle motors of high-density optical disc players,” Jpn. J. Appl. Phys., vol.47, no. 10, pp. 8101-8105, 2008.
[37] C. S. Liu, Y. C. Chuo, P. H. Lin, M. C. Tsai, Y. H. Chang, and J. B. Horng, “Effects of the fluid dynamic bearing design on rotational precision of a spindle motor,” IEEE Trans. Magn., vol. 43, no.2, pp. 790-792, 2007.
[38] C. S. Liu, M. C. Tsai, Y. H. Wang, K. W. Lin, Y. C. Chuo, L. Y. Cheng, J. Y. Lee, Y. H. Chang, and J. B. Horng, “A slim spindle motor for blue ray disc player applications,” J. Magn. Magn. Mater., vol. 304, pp.362-364, 2006.
[39] 劉建聖, 卓英吉, 張裕修, 洪基彬, “動壓軸承及具有該動壓軸承之主軸馬達,” 中華民國專利 I288997, 2007.
[40] C. Y. Chen, R. H. Yen and C. S. Liu, “Characteristics of dynamic coefficients on stability for herringbone-grooved journal bearings,” Appl. Math. Inf. Sci., vol. 7, no.3, pp.1215-1223, 2013.
[41] K. Kang, Y. Rhim, and K. Sung, “A study of the oil-lubricated herringbone-grooved journal bearing-part 1: Numerical analysis,” ASME J. Tribol., vol. 118(4), pp. 906-911, 1996.
[42] A. M. Gad, M. M. Nemat-Alla, A A. Khalil, and A. M. Nasr, “On the optimum groove geometry for herringbone grooved journal bearings,” ASME J. Tribol., vol. 128(3), pp. 585-593, 2006.
[43] N. Kawabata, Y. Ozawa, S. Kamaya, and Y. Miyake, “ Static characteristics of the regular and reversible rotation type herringbone grooved journal bearing,” ASME J. Tribol., vol. 111(3), pp. 484-490, 1989.
[44] H. Leuthold, D. J. Jennings, L. Nagarathnam, A. Grantz, and S. Parsoneault, “Sinusoidal grooving pattern for grooved journal bearing,” Seagate Technology Inc., 1999.
[45] R. H. Yen and C. Y. Chen, “Enhancement of journal bearings characteristics using novel elliptical grooves,” Proc. IMechE, Part J: J. Engineering Tribology, vol. 224, pp. 259-269, 2010.
[46] R. H. Yen and C. Y. Chen, “Enhancement of reversible rotation journal bearing performance using elliptical grooves,” ASME J. Tribol., vol. 133, pp. 011704-1-011704-9, 2011.
[47] 顏瑞和, 陳建佑, “流體動壓軸承,” 中華民國專利 I332061, 2010.
[48] 劉建聖, 蔡孟哲, 張裕修, 洪基彬, “多階動壓溝槽及具有該多階動壓溝槽之動壓軸承,” 中華民國專利 I329713, 2010.
[49] C. S. Liu, M. C. Tsai, R. H. Yen, P. D. Lin, and C. Y. Chen, “Design and experimental verification of novel hydrodynamic grooved journal bearing,” J. Chin. Soc. Mech. Eng., vol. 31, no. 2, pp. 137-144, 2010.
[50] C. W. Lee, “Fluid bearing apparatus having a uniform dynamic pressure distribution,” US Patent No. 5911512, 1999.
[51] S. U. Kim, “Fluid dynamic bearing motor,” US Patent No. 7125170, 2006.
[52] J. Oelsch, “Hydrodynamic bearing, spindle motor and hard disk drive,” US Patent No. 6948852, 2005.
[53] S. Yoshikawa, and T. Yoshitsugu, “Hydrodynamic bearing and motor having the same,” US Patent No. 6364532, 2002.
[54] 姚文雪, “改良結構的流體動壓軸承及流體動壓轉軸,” 中華民國專利 M422615, 2012.
[55] 姚文雪, “流體動壓軸承及流體動壓轉軸,” 中華民國專利 M425192, 2012.
[56] H. Kokumai, K. Harada, and I. Komori, “Fluid dynamic pressure bearing device,” WIPO Patent No. WO2012105280, 2012.
[57] A. J. Aiello, “Groove configuraion for a fluid dynamic bearing,” US Patent No. 20120230617, 2012.
[58] W. Chang, C. H. Huang, Y. H. Chang, and H. K. Hsu, “Composite fluid dynamic bearing and its manufacturing method,” US Patent No. 6769808, 2004.
[59] T. Ikegawa, “Hydrodynamic bearing device,” US Patent No. 6877902, 2005.
[60] C. H. Huang, W. C. Shih, and H. S. Pei, “Fluid dynamic bearing unit,” US Patent No. 7229214, 2007.
[61] H. Leuthold, D. J. Jennings, L. Nagarathnam, A. Grantz, and S. Parsoneault, “Sinusoidal grooving pattern for grooved journal bearing,” US Patent No. 5908247, 1999.
[62] M. R. Mohamed, K. H. Gunter, L. L. Hans, and J. A. Anthony, “Grooving pattern for grooved fluid bearing,” US Patent No. 20040141666, 2004.
[63] T. Yamamoto, “Fluid bearing device and spindle motor,” US Patent No. 20050232522, 2005.
[64] http://www.ntn.co.jp/english/news/news_files/new_products/news201000012.html
[65] 鄭燕琴, 田口品質工程技術理論與實務, 中華民國品質管制學會, 台北市, 1995.
[66] G. Taguchi, “Quality engineering (Taguchi Methods) for the development of electronic circuit technology,” IEEE Trans. Reliab., vol. 44, no. 2, pp. 225-229, 1995.
[67] G. Taguchi, “The role of D.O.E for robust engineering : A commentary,” Qual. Reliab. Eng. Int., vol. 12, pp. 73-74, 1996.
[68] G. Taguchi, “Taguchi methods in LSI fabrication process, ”, IEEE International Workshop on Statistical Methodology, pp. 1-6, 2001.
[69] M. Abdolshah, R. M. Yusuff, Y. B. Ismail, and T. S. Hong, “A new technique to measure process capability with Taguchi loss functions,”, ICIME, pp. 186-190, 2009.
[70] V. N. Nair, “Taguchi’s parameter design: A panel discussion,” Technometrics, vol. 34, no.2, pp. 127-161, 1992.
[71] D. Clausing, “Taguchi methods to improve the development process,” ICC, vol. 2, pp. 826-832, 1988.
[72] P. Angelopoulos, K. Drosou, and C. Koukouvinos, “An orthogonal arrays approach to robust parameter designs methodology,” J. Appl. Stat., vol. 40, no. 2, pp. 429-437, 2013.
[73] E. Wojciechowski and M. S. Phadke, “Optimizing video compression using robust parameter design,” GLOBECOM, vol. 4, pp. 2634-2639, 2001.
[74] H. R. Humberto, S. L. Jaime, and V. C. Adan, “Improving a soldering process applying the dual response approach to a Taguchi’s orthogonal array,” Comput. Ind. Eng., pp. 1174-1178, 2009.
[75] D. C. Montgomery, Design and analysis of experiments, 3rd ed., John Wiley & Sons Inc., New York, 1991.
[76] 李輝煌, 田口方法:品質設計的原理與實務, 第四版, 高立圖書有限公司, 新北市, 2011.
[77] 張永杭, 田口品質工程(田口方法), 永續經營管理顧問公司, 2003.
[78] G. H. Jang and D. I. Chang, “Analysis of a hydrodynamic herringbone grooved journal bearing considering cavitation,” ASME J. Tribol., vol.122(1), pp.103-109, 2000.
[79] W. Junmei, W. Jiankang, T. S. Lee, and C. Shu, “A numerical study of cavitation foot-prints in liquid-lubricated asymmetrical herringbone grooved journal bearings,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 12(5), pp.518-540, 2002.
[80] T. Asada, H. Saitou, Y. Asaida and K. Itoh, “Characteristic analysis of hydrodynamic bearings for HDDs,” IEEE Trans. Magn., vol. 37, no. 2, pp. 810 - 814, 2001. |