博碩士論文 100323030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.191.27.78
姓名 李昱澄(Yu-cheng Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以田口法作微型動壓軸承最佳化設計與性能評價
(Optimal Design and Experimental Verification of Miniature Fluid Dynamic Bearings Using the Taguchi Method)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ 多功能崁入式金屬網格透明電極技術開發
★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極
★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極★ 航太用鋁合金板熱處理爐設施之研究
★ 雷射加工機應用於微米元件轉印製程之研究★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 動壓軸承具有低噪音、低磨耗、耐震等特性,且相較於傳統的滾珠軸承,動壓軸承更具備高精度、壽命長之優勢。由於動壓軸承是以黏性潤滑油作為介質,其主要利用微細溝槽的流力特性,促使軸與軸承間隙中充滿潤滑流體進而達到充份潤滑與建壓效果。為了將流體保留在間隙內,一般的做法是在軸承表面上刻有人字型溝槽,其目的除了讓主軸旋轉時,將油膜擠壓入微細溝槽,使流體壓力升高外,更可使流體集中於內部進而達到防漏的功能。因此,動壓軸承取代了傳統滾珠軸承已成為新一代資料儲存裝置所使用之軸承。
近年來,產品受到微型化設計之影響,因而衍生出零件微型化之後,動壓軸承建壓不足的缺點。根據文獻所知,當動壓軸承微型化之後會有建壓效果不足之問題。但由過往文獻中,大多是以內徑2 mm的動壓軸承為基礎去做分析研究,尚未有文獻針對市售最微型內徑0.6 mm之動壓軸承去做詳細分析。因此,本文係針對現今市售內徑0.6 mm的動壓軸承去做負載能力及洩漏量之分析。此外,為了進一步提升微型化後動壓軸承的負載能力,本實驗室團隊嘗試開發一新型橢圓多階動壓軸承,並透過數值模擬程式找出其最佳化設計。由於受限單一數值模擬程式僅能解析單一溝槽幾何外型,因此本實驗室團隊另外嘗試利用市售軟體Comsol來模擬分析,其主要優點僅利用單一程式就可模擬不同的溝槽外型。
本文研究之主題即是利用數值模擬程式和Comsol模擬軟體並搭配田口法來針對內徑0.6 mm的雙階人字型動壓軸承、橢圓多階動壓軸承和可反轉動壓軸承進行負載能力和洩漏量分析,並分別找出其最佳化溝槽設計參數。
摘要(英) Fluid dynamic bearings(FDB) possess some characteristics of low noise, low friction, and shock resistance. In contrast to conventional ball bearings, FDBs have the advantages of high precision and an extended service life. Since FDBs use lubricant as a medium, the conventional herringbone grooves (HGJB) pump the lubricant in the inward direction during operation, i.e. toward the center of the bearing. Thus it has been known that HGJB increases the pressure within the journal, and improve the bearing performances. Therefore, the use of FDB has attracted particular interest for next-generation data storage applications.
However, the conventional HGJB has a chief drawback. The load capacity of the conventional HGJB decreases with decreasing dimension of the bearing, thus the spindle stiffness could be insufficient for miniaturized conventional HGJB. Nonetheless, some studies in the past have investigated the inner diameter of bearing at only Ø2 mm, and no study has analyzed the most miniature inner diameter of bearing at Ø0.6 mm. Therefore, aim in this study, the load capacity and side leakage of FDB of Ø0.6 mm inner diameter are analyzed respectively. In order to further improve the load capacity and provide greater spindle stiffness, this study will develop a newly designed multi-step elliptical groove journal bearing (Multi-step EGJB) and utilize numerical analysis program to find its optimal design parameters. In addition, this study also analyzes the performance of reversibl groove journal bearing (RGJB) using Comsol software. And this software can simulate different groove patterns.
Therefore, the aim of this study is to utilize numerical simulation program, Comsol software and Taguchi method to analyze the optimal design parameters of the HGJB, EGJB, and RGJB of Ø0.6 mm inner diameter.
關鍵字(中) ★ 動壓軸承
★ 流體軸承
★ 負載能力
★ 洩漏量
★ 田口法
關鍵字(英) ★ Fluid dynamic bearings
★ hydrodynamic bearings
★ Load capacity
★ Side leakage
★ Taguchi method
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XIII
符號說明 XVII
一、 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-2-1 動壓軸承相關文獻回顧 3
1-2-2 動壓軸承相關專利回顧 8
1-3 研究動機與目的 11
1-4 論文架構 15
二、 基礎理論 16
2-1 統御方程式(Governing Equation) 16
2-2 田口法 19
2-2-1 參數設計 20
2-2-2 直交表實驗法 22
2-2-3 品質特性種類 23
2-3 小結 24
三、 實驗方法 25
3-1 程式驗證 25
3-1-1 數值模擬程式驗證 25
3-1-2 Comsol模擬軟體驗證 26
3-2 實驗規劃 27
3-2-1 雙階人字型動壓軸承實驗規劃 27
3-2-2 橢圓多階動壓軸承實驗規劃 31
3-2-3 可反轉動壓軸承實驗規劃 34
四、 實驗結果與討論 38
4-1 雙階人字型動壓軸承最佳化 38
4-1-1 各參數分析 38
4-1-2 負載能力最佳化結果 46
4-1-3 洩漏量最佳化結果 50
4-1-4 小結 54
4-2 橢圓多階動壓軸承最佳化 57
4-2-1 各參數分析 57
4-2-2 負載能力最佳化結果 70
4-2-3 洩漏量最佳化結果 85
4-2-4 小結 102
4-3 可反轉動壓軸承最佳化 105
4-3-1 各參數分析 105
4-3-2 負載能力最佳化結果 112
4-3-3 洩漏量最佳化結果 118
4-3-4 小結 125
4-4 橢圓多階動壓軸承與雙階人字型動壓軸承最佳化比較 127
4-4-1 負載能力比較 127
4-4-2 洩漏量比較 131
4-4-3 小結 131
五、 結論與未來展望 132
5-1 結論 132
5-2 未來展望 133
參考文獻 134
附錄A 142
附錄B 143
附錄C 144
附錄D 145
附錄E 146
附錄F 147
附錄G 148
附錄H 149
附錄I 150
附錄J 151
參考文獻 [1] B. Schechtman, “The role of future magnetic tape technology for digital archive, preservation and sustainability,” ISIC Digital Archive, Preservation and Sustainability Workshop, 2008.
[2] N. Mori, Y. Akamatsu, and K. Okamura, “Hydrodynamic bearing unit,” US Patent6981797, 2006.
[3] M. Feng, and T. Kenjo, “Friction and wear of spindle motor hydrodynamic bearings for information storage systems during startup and shutdown,” Microsyst. Technol., vol. 13, pp. 987-997, 2007.
[4] G. H. Jang, S. J. Park, C. S. Kim, and J. H. Han, “Investigation of the electromechanical variables of the spindle motor and the actuator of a HDD due to positioning and free fall,” Microsyst. Technol., vol. 13, pp.797-809 , 2007.
[5] X. Lu, and M. M. Khonsari, “An experimental investigation of dimple effect on the Stribeck curve of journal bearings,” Tribol Lett, vol.27, pp. 169-176 , 2007.
[6] 劉建聖、林柏衡、卓英吉和張裕修, “高倍速薄型化HD-DVD 主軸馬達開發技術報告,” 工業技術研究院, 2006.
[7] D. Bonneau and J. Absi, “Analysis of aerodynamic journal bearings with small number of herringbone grooves by finite element method,” ASME J. Tribol., vol. 116(4), pp. 698-704, 1994.
[8] N. Zirkelback and L. S. Andrés, “Finite element analysis of herringbone groove journal bearings: a parametric study,” ASME J. Tribol., vol. 120, pp. 234-240, 1998.
[9] Y. Zang and M. R. Hatch, “Analysis of coupled journal and thrust hydrodynamic bearing using finite volume method,” ASME Advances in Information Storage and Processing System, vol. 1, pp. 71-79, 1995.
[10] M. Rahman and H. Leuthoid, “Computer simulation of a coupled journal and trust hydrodynamic bearing using a finite element method,” Proceedings of 25th Annual Symposium Incremental Motion Control Systems and Devices, pp. 103-112, 1996.
[11] G. H. Jang and D. I. Chang, “Analysis of a hydrodynamic herringbone grooved journal bearing considering cavitation,” ASME J. Tribol., vol. 122, pp. 103-109, 2000.
[12] G. H. Jang and J. W. Yoon, “Nonlinear dynamic analysis of a hydrodynamic journal bearing considering the effect of a rotating or stationary herringbone groove,” ASME J. Tribol., vol. 124, pp. 297-304, 2002.
[13] G. H. Jang and J. W. Yoon, “Stability analysis of a hydrodynamic journal bearing with rotating herringbone grooves,” ASME J. Tribol., vol.125, pp. 291-300, 2003.
[14] W. Junmei, W. Jiankang, T. S. Lee, and C. Shu, “A numerical study of cavitation foot-prints in liquid-lubricated asymmetrical herringbone grooved journal bearings,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 12(5), pp. 518-540, 2002.
[15] C. C. Wang, H.T. Yau, M. J. Jang, and Y. L. Yeh, “Theoretical analysis of the non-linear behavior of a flexible rotor supported by herringbone grooved gas journal bearings,” Tribol. Int., vol. 40, pp. 533-541, 2007.
[16] S. Kango, D. Singh, and R. K. Sharma, “Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing,” Meccanica, vol. 47, pp. 469-482, 2012.
[17] X. K. Li, “An analysis of journal orbits for nonlinear dynamic bearing systems”, Theor. Comput. Fluid Dyn., vol.13, pp. 209-230, 1999.
[18] K. M. Jung and G. H. Jang, “Axial shock-induced motion of the air-oil interface of fluid dynamic bearings of a non-operating hard disk drive,” IEEE Trans. Magn., vol. 47, no.7, pp. 1911 - 1917, 2011.
[19] C. Y. Chen, R. H. Yen, and C. C. Chang, “Spectral element analysis of herringbone -grooved journal bearings with groove–ridge discontinuity,” Int. J. Numer. Methods Fluids, vol. 66, pp. 1116-1131, 2011.
[20] C. C. Wang, “Bifurcation and nonlinear dynamic analysis of united gas-lubricated bearing system,” Computers and Mathematics with Applications, vol. 64, pp. 729-738, 2012.
[21] J. H. Vohr and C. Y. Chow, “Characteristics of herringbone-grooved gas-lubricated journal bearings,” ASME J. Basic Eng., vol. 87(3), pp. 558-569, 1965.
[22] M. Sahu, M. Sarangi, and B. C. Majumdar, “Thermo-hydrodynamic analysis of herringbone grooved journal bearings,” Tribol. Int., vol. 39, pp. 1395-1404, 2006.
[23] J. M. Miao, B. H. Chang., and P. H. Chen, “Numerical predictions of a flow fField in a hydrodynamic journal bearing with herringbone microgrooves,” Prog. Comput. Fluid Dyn., vol. 8, no. 7/8, pp. 486-495, 2008.
[24] A. C. Bannwart, K. L. Cavalca, G. B. Daniel, “Hydrodynamic bearings modeling with alternate motion,” Mech. Res. Commun., vol. 37, pp. 590-597, 2010.
[25] S. Uhkoetter, SAD. Wiesche, M. Kursch, and C. Beck, “Development and validation of a three-dimensional multiphase flow computational fluid dynamics analysis for journal bearings in steam and heavy duty gas turbines,” J. Eng. Gas Turbines Power, vol. 134, pp. 102504-1-102504-8, 2012.
[26] H. W. Kim, G. H. Jang, and H. J. Ha, “A generalized Reynolds equation and its perturbation equations for fluid dynamic bearings with curved surfaces,” Tribology International, vol. 50, pp. 6-15, 2012.
[27] H. Hashimoto, M. Ochiai, and Y. Sunami, “Robust optimum design of fluid dynamic bearing for hard disk drive spindle motors,” ASME J. Tribol., vol. 134, pp. 041102-1-041102-11, 2012.
[28] G. G. Hirs, “The load capacity and stability characteristics of hydrodynamic groove journal bearings,” ASLE Transactions, vol. 8, pp. 296-305, 1965.
[29] S. W. Lo and S. F. Tsai, “FEA study on electromagnetic forming of hydrodynamic herringbone-groove bearing for high speed miniature motors,” J. Chin. Soc. Mech. Eng., vol. 29(2), pp. 139-147, 2008.
[30] T. Hirayama, N. Yamaguchi, S. Sakai, N. Hishida, T. Matsuoka, and H. Yabe, “Optimization of groove dimensions in herringbone-grooved journal bearings for improved repeatable run-out characteristics,” Tribol. Int., vol. 42(5), pp. 675-681, 2009.
[31] Y. S. Ihn, S. K. Kim, D. Oh, M. E. Kim, and J. C. Koo, “Non-contact measurement method of mechanical stiffness for high revolutionary speed precision fluid dynamic bearing rotors,”Microsyst Technol, vol. 16, pp. 233-240, 2010.
[32] B. H. Chang, “Experimental studies on dynamic coefficients and stability analysis of an impeller-spindle with herringbone-grooved journal bearing,” National Taiwan University, PhD Dissertation , 2011.
[33] B. H. Chang, P. H. Chen, and D. S. Lee, “Experimental stability study on herringbone microgrooved journal bearing in an impeller spindle,” J. Mech., vol. 28, pp. 123-133, 2012.
[34] S. Naïmi, M. Chouchane,and J. L. Ligier, “Steady state analysis of a hydrodynamic short bearing supplied with a circumferential groove,” Comptes Rendus Mecanique, vol. 338, pp. 123-133, 2012.
[35] C. S. Liu, P. D. Lin, and M. C. Tsai, “A miniature spindle motor with fluid dynamic bearings for portable storage device applications,” Microsyst Technol,, vol. 15, pp. 338-349, 2010.
[36] C. S. Liu and P. D. Lin, “Analysis and validations of fluid dynamic bearing for spindle motors of high-density optical disc players,” Jpn. J. Appl. Phys., vol.47, no. 10, pp. 8101-8105, 2008.
[37] C. S. Liu, Y. C. Chuo, P. H. Lin, M. C. Tsai, Y. H. Chang, and J. B. Horng, “Effects of the fluid dynamic bearing design on rotational precision of a spindle motor,” IEEE Trans. Magn., vol. 43, no.2, pp. 790-792, 2007.
[38] C. S. Liu, M. C. Tsai, Y. H. Wang, K. W. Lin, Y. C. Chuo, L. Y. Cheng, J. Y. Lee, Y. H. Chang, and J. B. Horng, “A slim spindle motor for blue ray disc player applications,” J. Magn. Magn. Mater., vol. 304, pp.362-364, 2006.
[39] 劉建聖, 卓英吉, 張裕修, 洪基彬, “動壓軸承及具有該動壓軸承之主軸馬達,” 中華民國專利 I288997, 2007.
[40] C. Y. Chen, R. H. Yen and C. S. Liu, “Characteristics of dynamic coefficients on stability for herringbone-grooved journal bearings,” Appl. Math. Inf. Sci., vol. 7, no.3, pp.1215-1223, 2013.
[41] K. Kang, Y. Rhim, and K. Sung, “A study of the oil-lubricated herringbone-grooved journal bearing-part 1: Numerical analysis,” ASME J. Tribol., vol. 118(4), pp. 906-911, 1996.
[42] A. M. Gad, M. M. Nemat-Alla, A A. Khalil, and A. M. Nasr, “On the optimum groove geometry for herringbone grooved journal bearings,” ASME J. Tribol., vol. 128(3), pp. 585-593, 2006.
[43] N. Kawabata, Y. Ozawa, S. Kamaya, and Y. Miyake, “ Static characteristics of the regular and reversible rotation type herringbone grooved journal bearing,” ASME J. Tribol., vol. 111(3), pp. 484-490, 1989.
[44] H. Leuthold, D. J. Jennings, L. Nagarathnam, A. Grantz, and S. Parsoneault, “Sinusoidal grooving pattern for grooved journal bearing,” Seagate Technology Inc., 1999.
[45] R. H. Yen and C. Y. Chen, “Enhancement of journal bearings characteristics using novel elliptical grooves,” Proc. IMechE, Part J: J. Engineering Tribology, vol. 224, pp. 259-269, 2010.
[46] R. H. Yen and C. Y. Chen, “Enhancement of reversible rotation journal bearing performance using elliptical grooves,” ASME J. Tribol., vol. 133, pp. 011704-1-011704-9, 2011.
[47] 顏瑞和, 陳建佑, “流體動壓軸承,” 中華民國專利 I332061, 2010.
[48] 劉建聖, 蔡孟哲, 張裕修, 洪基彬, “多階動壓溝槽及具有該多階動壓溝槽之動壓軸承,” 中華民國專利 I329713, 2010.
[49] C. S. Liu, M. C. Tsai, R. H. Yen, P. D. Lin, and C. Y. Chen, “Design and experimental verification of novel hydrodynamic grooved journal bearing,” J. Chin. Soc. Mech. Eng., vol. 31, no. 2, pp. 137-144, 2010.
[50] C. W. Lee, “Fluid bearing apparatus having a uniform dynamic pressure distribution,” US Patent No. 5911512, 1999.
[51] S. U. Kim, “Fluid dynamic bearing motor,” US Patent No. 7125170, 2006.
[52] J. Oelsch, “Hydrodynamic bearing, spindle motor and hard disk drive,” US Patent No. 6948852, 2005.
[53] S. Yoshikawa, and T. Yoshitsugu, “Hydrodynamic bearing and motor having the same,” US Patent No. 6364532, 2002.
[54] 姚文雪, “改良結構的流體動壓軸承及流體動壓轉軸,” 中華民國專利 M422615, 2012.
[55] 姚文雪, “流體動壓軸承及流體動壓轉軸,” 中華民國專利 M425192, 2012.
[56] H. Kokumai, K. Harada, and I. Komori, “Fluid dynamic pressure bearing device,” WIPO Patent No. WO2012105280, 2012.
[57] A. J. Aiello, “Groove configuraion for a fluid dynamic bearing,” US Patent No. 20120230617, 2012.
[58] W. Chang, C. H. Huang, Y. H. Chang, and H. K. Hsu, “Composite fluid dynamic bearing and its manufacturing method,” US Patent No. 6769808, 2004.
[59] T. Ikegawa, “Hydrodynamic bearing device,” US Patent No. 6877902, 2005.
[60] C. H. Huang, W. C. Shih, and H. S. Pei, “Fluid dynamic bearing unit,” US Patent No. 7229214, 2007.
[61] H. Leuthold, D. J. Jennings, L. Nagarathnam, A. Grantz, and S. Parsoneault, “Sinusoidal grooving pattern for grooved journal bearing,” US Patent No. 5908247, 1999.
[62] M. R. Mohamed, K. H. Gunter, L. L. Hans, and J. A. Anthony, “Grooving pattern for grooved fluid bearing,” US Patent No. 20040141666, 2004.
[63] T. Yamamoto, “Fluid bearing device and spindle motor,” US Patent No. 20050232522, 2005.
[64] http://www.ntn.co.jp/english/news/news_files/new_products/news201000012.html
[65] 鄭燕琴, 田口品質工程技術理論與實務, 中華民國品質管制學會, 台北市, 1995.
[66] G. Taguchi, “Quality engineering (Taguchi Methods) for the development of electronic circuit technology,” IEEE Trans. Reliab., vol. 44, no. 2, pp. 225-229, 1995.
[67] G. Taguchi, “The role of D.O.E for robust engineering : A commentary,” Qual. Reliab. Eng. Int., vol. 12, pp. 73-74, 1996.
[68] G. Taguchi, “Taguchi methods in LSI fabrication process, ”, IEEE International Workshop on Statistical Methodology, pp. 1-6, 2001.
[69] M. Abdolshah, R. M. Yusuff, Y. B. Ismail, and T. S. Hong, “A new technique to measure process capability with Taguchi loss functions,”, ICIME, pp. 186-190, 2009.
[70] V. N. Nair, “Taguchi’s parameter design: A panel discussion,” Technometrics, vol. 34, no.2, pp. 127-161, 1992.
[71] D. Clausing, “Taguchi methods to improve the development process,” ICC, vol. 2, pp. 826-832, 1988.
[72] P. Angelopoulos, K. Drosou, and C. Koukouvinos, “An orthogonal arrays approach to robust parameter designs methodology,” J. Appl. Stat., vol. 40, no. 2, pp. 429-437, 2013.
[73] E. Wojciechowski and M. S. Phadke, “Optimizing video compression using robust parameter design,” GLOBECOM, vol. 4, pp. 2634-2639, 2001.
[74] H. R. Humberto, S. L. Jaime, and V. C. Adan, “Improving a soldering process applying the dual response approach to a Taguchi’s orthogonal array,” Comput. Ind. Eng., pp. 1174-1178, 2009.
[75] D. C. Montgomery, Design and analysis of experiments, 3rd ed., John Wiley & Sons Inc., New York, 1991.
[76] 李輝煌, 田口方法:品質設計的原理與實務, 第四版, 高立圖書有限公司, 新北市, 2011.
[77] 張永杭, 田口品質工程(田口方法), 永續經營管理顧問公司, 2003.
[78] G. H. Jang and D. I. Chang, “Analysis of a hydrodynamic herringbone grooved journal bearing considering cavitation,” ASME J. Tribol., vol.122(1), pp.103-109, 2000.
[79] W. Junmei, W. Jiankang, T. S. Lee, and C. Shu, “A numerical study of cavitation foot-prints in liquid-lubricated asymmetrical herringbone grooved journal bearings,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 12(5), pp.518-540, 2002.
[80] T. Asada, H. Saitou, Y. Asaida and K. Itoh, “Characteristic analysis of hydrodynamic bearings for HDDs,” IEEE Trans. Magn., vol. 37, no. 2, pp. 810 - 814, 2001.
指導教授 何正榮、劉建聖
(Jeng-rong Ho、Chien-sheng Liu)
審核日期 2013-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明