以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:98 、訪客IP:52.15.196.4
姓名 郭佳韋(Chia-Wei Kuo) 查詢紙本館藏 畢業系所 應用地質研究所 論文名稱 自然斜坡土壤深度推估方法探討
(Estimation of Soil Depth on Natural Slope)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 土壤深度為預測淺層山崩的定值分析法中重要參數之一,也與淺層山崩崩塌量的估測密切相關。本研究以石門水庫集水區為例,建立自然斜坡土壤深度推估經驗式,並利用手動螺旋鑽進行野外調查量測土壤深度。本研究調查點選在單純由土壤生成作用及側向的擴散作用所形成之自然斜坡上,避開平地、河床、河階、崩塌地、侵蝕溝及人工開挖回填之坡地。除了土壤深度量測,坡度及坡向也將一併紀錄,而地形曲率、濕度指數及岩性則透過DTM 計算及地質圖取得。將土壤深度與影響因子進行統計迴歸分析建立石門水庫集水區土壤深度推估經驗式,並以R2 值、殘差分析及誤差均方根來評估不同的因子組合及不同迴歸模型所得推估經驗式之適切性。結果顯示以採用多變量迴歸方法,並以坡度百分比、地形曲率、濕度指數、坡向及岩性為因子,所得之評估結果最佳,其R2 值高達0.91,殘差落在±0.2m 以內的資料組數為75 組(占資料總數90%),殘差值之標準差為0.14m,誤差均方根為0.14m。而只以坡度百分比為因子之單變量迴歸亦有不錯結果,其R2 值達0.82,殘差落在±0.2m 以內的資料組數為56 組(占資料總數67%),殘差值之標準差為0.22m,誤差均方根為0.22m。 摘要(英) Soil depth is an important factor in the physical based method of the prediction of shallow landslides. It is also critical in the estimation of the shallow landslide volume. This reaserch selected the Shihmen Reservoir catchment area as a study area to develop empirical fomulas for estimation of soil depth on natural slope. By using field obvervation and hand auger, I performed the investigation of soil depth at several test sites. The measurement spots were selected on natural slope, which are formed by soil production and
modified by mild slope processes, avoiding falts, river banks, river terraces, collapeses, gullies, and artificial slopes. Accompany the depth measurement, coordinate as well as slope gradient and aspect at the spot were also measured
and recorded. Terrain curvature, wetness indexe and lithology at a spot are then reduced from DTM and gelogical map, and put together for use. Regression analysis of soil depth and controlling factors is performed in order to build an empirical estimation model of soil depth at Shihmen Reservoir catchment. Different combinations of factors and form were testd in the study, and R2 value, residual analysis and root mean square of error were used to evaluate the appropriateness of an empirical estimate model. Result reveals that the best estimate is the mutiple regression using slope gradinet, terrain curveture, wetness indexe, slope aspect, and lithology as factors; the R2 value is 0.91, the residual value of 75 data (90% of all data) are within ±0.2m, the standard deviation of residual is 0.137m, and the root mean square of error is 0.14m. A simple formula using only slope gradient is also recommended; the R2 value is 0.82, the residual value of 56 data (67% of all data) are within ±0.2m, the standard deviation of residual is 0.218m, and the root mean square of error is 0.22m.關鍵字(中) ★ 自然斜坡
★ 土壤深度
★ 迴歸分析關鍵字(英) ★ Natural Slope
★ Soil depth
★ Regression analysis論文目次 中文摘要....................................................I
英文摘要...................................................II
致謝.......................................................III
目錄........................................................IV
圖目...................................................................................................................VII
表目....................................................................................................................XI
第一章 緒論......................................................................................................1
1.1 研究動機與目的.................................................................................1
1.2 文獻回顧.............................................................................................2
1.2.1 土壤深度與地形屬性之關連................................................2
1.2.2 土壤深度推估之相關研究....................................................2
1.3 研究架構與流程...............................................................................12
第二章 研究方法............................................................................................14
2.1 野外調查...........................................................................................14
2.1.1 調查點位置選定原則..........................................................14
2.1.2 調查深度及土壤定義..........................................................14
2.1.3 土壤深度量測方法..............................................................16
2.1.4 坡度與坡向量測方法..........................................................20
2.2 室內資料分析...................................................................................22
2.2.1 地形曲率計算......................................................................22
2.2.2 濕度指數計算......................................................................24
2.2.3 岩性分類..............................................................................25
2.3 統計迴歸分析...................................................................................26
2.4 評估方式...........................................................................................27
V
2.4.1 決定係數R2 值......................................................................27
2.4.2 殘差分析................................................................................27
2.4.3 誤差均方根............................................................................27
第三章 研究區域與資料蒐集........................................................................28
3.1 研究區域...........................................................................................28
3.1.1 位置與交通..........................................................................28
3.1.2 地理與地形..........................................................................28
3.1.3 氣候與水文..........................................................................29
3.1.4 地質與構造..........................................................................31
3.2 資料蒐集...........................................................................................38
3.2.1 基本資料收集......................................................................38
3.2.2 野外調查點資料..................................................................39
第四章 研究成果............................................................................................40
4.1 野外調查點分佈...............................................................................40
4.2 土壤深度推估經驗式.......................................................................47
4.2.1 單變量迴歸..........................................................................47
4.1.2 多變量迴歸..........................................................................51
4.3 迴歸結果評估...................................................................................54
4.3.1 殘差分析................................................................................54
4.3.2 誤差均方根............................................................................70
4.3.3 評估結果彙整...................................................................... .71
4.4 土壤深度空間分佈圖.......................................................................73
第五章 討論....................................................................................................77
5.1 土壤深度相關因子探討...................................................................77
5.2 土壤深度推估經驗式探討...............................................................80
5.3 野外量測坡度與DTM 檢核坡度推估結果之差異........................81
5.4 與前人研究之比較探討...................................................................85
VI
第六章 結論與建議........................................................................................88
6.1 結論...................................................................................................88
6.2 建議...................................................................................................89
參考文獻............................................................................................................90
附錄A 野外現地調查紀錄............................................................................95
附錄B 各調查點所對應之因子值..............................................................138
附錄C 野外調查點套疊1/5000 正射航照.................................................145參考文獻 參考文獻
王智仁、許世孟、柯建仲、蘇泰維、李錦發,山區土壤厚度與坡度關係之
建立,第13屆台灣岩盤工程研究會議,2009。
李錫堤,山崩及土石流災害分析的方法學回顧與展望,台灣公共工程學刊
第五卷 第一期,2009。
李浩瑋,結合TRIGRS與TOPMODEL預測淺層山崩,國立中央大學應用地
質研究所碩士論文,2011。
林永祥,環境地質因子對國道邊坡穩定之影響-以國道三號白河至竹山路段
為例,國立成功大學資源工程研究所碩士論文,2004。
林柏伸,台灣東北部地區隱沒帶地震強地動衰減式之研究,國立中央大學
應用地質研究所碩士論文,2002。
林柏勳、許振崑、陳建宏、冀樹勇、邱世宜、鍾啟榮、王晉倫,石門水庫
集水區土壤厚度經驗式探討,水保技術 6(2),98-109頁,2011a。
林柏勳、許振崑、冀樹勇,集水區土壤厚度經驗式應用分析,中興工程季
刊第111期,35-45頁,2011b。
林淑媛,地形地質均質區劃分與山崩因子探討,國立中央大學應用地質研
究所碩士論文,2003。
姜壽浩,以局部穩定條件率定之土壤厚度估測模式,國立台灣大學地理環
境資源研究所碩士論文,2006。
姜壽浩、徐美玲,以局部穩定條件率定之邊坡土壤厚度估測模式,地理學
報,第44 期,23-38 頁,2006。
陳本康,石門水庫集水區崩塌特性及潛勢評估研究,國立中興大學水土保
持學系研究所博士論文,2005。
陳嬑璇、譚志豪、陳勉銘、蘇泰維,降雨誘發山區淺層滑坡之臨界雨量研
析,中華水土保持學報 44(1),87-96頁,2013
91
張永欣,以多變量地質統計方法進行雨量空間內插,國立中央大學應用地
質研究所碩士論文,2007。
張弼超,運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例,
國立中央大學應用地質研究所碩士論文,2005。
黃瑞賢,大肚溪流域河階地形研究,國立中央大學應用地質研究所碩士論
文,2002。
童煜翔,山崩引致之堰塞湖天然壩穩定性之量化分析,國立中央大學應用
地質研究所碩士論文,2008。
經濟部中央地質調查所,易淹水地區上游集水區地質調查與資料庫建置-
集水區地質調查及山崩土石流調查與發生潛勢評估計畫,2007。
蔡呈奇,應用地域分析與地理資訊系統繪製土壤圖以臺灣北部火山灰土壤
為例,國立台灣大學農業化學研究所博士論文,2002。
歐陽元淳,水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例,國立台灣
大學地理環境資源學系研究所碩士論文,2002。
鍾欣翰,考慮水文模式的地形穩定分析-以匹亞溪集水區為例,國立中央大
學應用地質研究所碩士論文,2008。
鐘意晴,區域性山崩潛感分析方法探討-以石門水庫集水區為例,國立中央
大學應用地質研究所碩士論文,2009。
Ahnert, F., Functional relationships between denudation, relief, and uplift in
large mid-latitude drainage basin, American Journal of Science, 268,
243-263., 1970.
Beven, K.J., Kirkby, M.J., A physically-based, variable contributing area model
of basin hydrology, Hydrological Sciences Billetin, 24, 43-69., 1979.
Bourennane, H., King, D., Couturier, A., Comparison of kriging with external
drift and simple linear regression for prediction soil horizon thickness
with different sample densities, Geoderma, 97, 255-271., 2000.
Blahut, J., Westen, C.J.V., Sterlacchini, S., Analysis of landslide inventories for
92
accurate prediction of debris-flow source areas, Geomorphology, 119,
36-51., 2010.
Carson, M.A., Kirkby, M.J., Hillslope Form and Process, Lodon Cambridge
University Press., 1972.
Casadel, M., Dietrich, W.E., Miller, N.L., Testing a model for predicting the
timing and location of shallow landslide initiation in soil-mantled
landscapes, Earth Surface Processes and Landforms, 28(9), 925-950.,
2003.
Catani, F., Segoni, S., Falorni, G., An empirical geomorphology-based approach
to the spatial prediction of soil thickness at catchment scale, Water
Resources Research, Vol.46, W05508., 2010.
Dietrich, W.E., Hus, M.L., Montgomery, D.R., A process-based model for
colluvial soil depth and shallow landsliding using digital elevation data,
Hydrological Process, 9, 383-400., 1995.
Delmonaco, G.., Leoni, G., Margottini, C., Puglisi, C., Spizzichino. D., Large
scale debris-flow hazard assessment: a geotechnical approach and GIS
modelling, Nat. Hazards Earth Syst. Sci., 3, 443–455., 2003.
Furbish, D.J., Fagherazzi, S., Stability of creeping soil and implications for
hillslope evolution, Water Resources Research, Vol.37, No.10,
2607–2618., 2001.
Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., Finkel, R.C., The soil
production and landscape equilibrium, Nature, 388, 358-361., 1997.
Heimsath, A.M., Dietrich, W.E., Nishiizumi, K., Finkel, R.C., Cosmogenic
nuclides, topography, and the spatial variation of soil depth,
Geomorphology, 27, 151-172., 1999.
Huang, J.C., Kao, S.J., Hsu, M.L., Lin J.C., Stochastic procedure to extract and
to integrate landslide susceptibility maps: an example of mountainous
93
watershed in Taiwan, Nat. Hazards Earth Syst. Sci., 6803-815., 2006.
Ho, J.Y., Lee, K.T., Chang, T.C., Wang, Z.Y., Liao, Y.H., Imfluence of spatial
distribution of soil thickness on shallow landslide prediction, Engineering
Geology, 124, 38-46, 2012.
Hopp, L., McDonnell, J.J., Connectivity at the hillslope scale Identifying
interactions between storm size,bedrock permeability, slope angle and
soil depth, Journal of Hydrology, 376, 378-391., 2009.
Kirkby, M.J., Hillslope process-response models based on the continuity
equation, Institute of British Geographers, Special Publication, 3, 15-30.,
1971.
Krezoner, W. R., Olson, K. R., Banwart, W. L. and Johnson, D. L., Soil,
landscape , and erosion relationships in northwest Illinois watershed, Soil
Science Society American Journal, 53: 1763-1711., 1989.
Khazai, B., Sitar, N., Assessment of Seismic Slope Stability Using GIS
Modeling, Geographic Information Science, Vol.6, No.2, 2000.
Lee, K.T., Ho, J.Y., Prediction of landslide occurrence based on
slope-instability analysis and hydrological model simulation, Journal of
Hydrology, 375, 489-497., 2009.
Moore, I. D. and Burch, J. R., Sediment transport capacity of sheet and rill flow:
Application of unit stream power theory: Water Resource Research, 22:
1350-1360., 1986.
Marques, M. A. and Mora, E., The influence of aspect on runoff and soil loss in
a Mediterranean burnt forest (Spain). Catena, 19, 333-344., 1992.
Martin, Y., Modelling hillslope evolution: linear and nonlinear transport
relations, Geomorphology, 34, 1–21., 2000.
Mehraban Rad, N., Esfandiary, M., Pirestani, M.R., Yasori, E.M., Simulation of
mechanistic model for soil development in Masuleh west of Alborz-Iran,
94
World Applied Sciences, 18, 4, 479-485, 2012.
Roering, J.J., Kirchner, J.W., Sklar, L.S., Dietrich, W.E., Hillslope evolution by
nonlinear creep and landsliding: An experimental study, GEOLOGY,
143-146., 2001.
Saulnier, G.-M., Obled, C., Beven, K., Analytical compensation between DTM
grid resolution and effective values of saturated hydraulic conductivity
within the TOPMODEL framework, Hydrol. Process., 11,1331-1346.,
1997.
Saulnier, G.-M., Beven, K., Obled, C., Including spatially variable effective soil
depths in TOPMODEL, J. Hydrol., 202, 158-172., 1997.
Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L., Michael,
J.A., Modeling regional initiation of rainfall-induced shallow landslides
in the eastern Umbria Region of central Italy. Landslides, 3, 181-194.,
2006.
Segoni, S., Rossi, G., Catani, F., Improving basin scale shallow landslide
modelling using reliable soil thickness maps, Nat Hazard, 61, 85-101,
2012.
Wilkinson, M.T., Humphreys, G.S., Exploring pedogenesis via nuclide-based
soil production rates and OSL-based bioturbation rates, Australian
Journal of soil Research, 43, 767-779., 2005.
Guthrie, R.H., Evans, S.G., Work, persistence, and formative events: The
geomorphic impact of landslides, Geomorphology, 88, 266-275., 2007.
Zhou, G.., Esaki, T., Mitani, Y., Xie, M., Mori, J., Spatial probabilistic
modeling of slope failure using integrated GIS Monte Carlo simulation
approach, Engineering Geology, 68, 373-386., 2003.指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2013-7-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare