博碩士論文 100624013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.19.31.73
姓名 張碩芬(Shuo-Fen Chang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用斜坡單元進行山崩潛感分析
(Using Slope-Unit for Landslide Susceptibility Assessment)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用斜坡單元當作基本測繪單元進行山崩潛感分析與製圖。斜坡單元的劃分具有地形上的考量,但以往應用在山崩潛感分析的斜坡單元劃設多使用集水區重疊法劃設,進一步的編修及合併等工作通常須以人工為之,相當耗費時間,且有較多人為主觀因素在內。本研究沿用簡瑋延(2011)所使用的物件導向式分析方法,自動化產製出斜坡單元,進一步的修改劃分流程並以統計方法檢核斜坡單元的劃分優劣。研究中將石門水庫上游集水區先進行地形分類,將沖積層、台地及階地等平坦區域先區分出來,再以子集水區為斜坡單元劃設前的限制範圍,最後以坡向為主要影像圖層匯入物件導向分析軟體Definiens之中,給定圖層權重及各項異質性指標進行影像分割,劃分斜坡單元。統計檢定則進行斜坡單元內部坡向及法向量的標準差計算,以研究區內兩個子集水區進行討論比較,結果顯示以本研究方法劃分斜坡單元得到較好的劃分成果。
接著利用斜坡單元進行山崩潛感分析,採用高程標準差、邊坡坡度比、濕度指數、坡度粗糙度、艾利颱風最大時雨量與總雨量進行羅吉斯迴歸。由於分析時斜坡單元屬於山崩或是非山崩群組的判定方式並無定論,本研究將採用不同崩壞比門檻值來判定山崩與非山崩組,找出最佳的山崩與非山崩組判定之崩壞比門檻值。分析結果顯示崩壞比門檻值定義為斜坡單元中山崩面積比為5%時得到的AUC為0.786是最高。
摘要(英) This study uses slope unit as mapping unit for landslide susceptibility assessment. The delineation of slope unit must consider topographic meaning. In the past, most of slope units applied to landslide susceptibility assessment were delineated by combining the watershed by DEM and the watershed by reverse DEM. Further editing and merging work is usually required and it needs much manual work. The process is times consuming, and containing too much subjective comment. This study follows Chien(2011) using an object-oriented analysis method to automatically generate slope unit. I have modified the processes of slope unit delineation and checked the slope unit quality by statistical methods. In the study area, Shihmen Reservoir catchment area, we first classified the flat area, and using sub-catchment for the former limits. Finally, I use slope aspect as an important component in the object-oriented analysis software, Definiens. According to the weight and the heterogeneity index of image layer, slope units are delineated. Then we calculated standard deviation of slope aspects and normal vectors in each slope unit. I choose two of sub-catchment in the study area for comparison and discussion. The result shows that the delineation methods of our study can get a better result.
Then we use the slope unit for landslide susceptibility assessment. Standard deviation of elevation, steep slope ratio, wetness index, slope roughness, the maximum rainfall intensity, and total rainfall of Aere typhoon were adopted in a logistic regression analysis. Because slope units belonging to landslide group or non-landslide group had no conclusive judgment previously, so I will choose different landslide area ratio of slope unit to determine the slope units belong to which group. It reveals that a 5% landslide area ratio of slope unit is good for the threshold. The result shows success rate of the model is fairly good with an AUC of 0.786.
關鍵字(中) ★ 斜坡單元
★ 物件導向
★ 山崩潛感分析
關鍵字(英)
論文目次 中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖 目 VII
表 目 XI
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 1
1.2.1測繪單元 1
1.2.2斜坡單元定義 3
1.2.3斜坡單元分割方法 4
1.2.4斜坡單元尺度 8
1.2.5斜坡單元在山崩潛感分析上之應用 10
1.3研究架構與流程 12
第二章 研究方法 16
2.1斜坡單元劃分-物件導向式影像分類方法 16
2.2山崩潛感分析 19
2.2.1羅吉斯迴歸 19
2.3.2成果驗證方法 23
第三章 研究區域概述及資料蒐集 27
3.1地形概述 27
3.2地層及斷層概述 27
3.3資料蒐集 34
3.3.1數值地形模型 34
3.3.2山崩目錄 35
3.3.3雨量資料 36
第四章 斜坡單元分析 39
4.1斜坡單元劃設資料處理 39
4.2斜坡單元劃分過程 45
4.2.1地形分類 45
4.2.2子集水區劃分 46
4.2.3斜坡單元劃分 48
4.2.4斜坡單元編修原則 52
4.3其他方法斜坡單元劃分 54
4.3.1集水區重疊法 54
4.3.2源頭切割法 54
第五章 山崩潛感分析 57
5.1因子處理 57
5.2因子篩選 66
5.3分析樣本選取 75
5.3.1斜坡單元內山崩崩壞比門檻值選擇 76
5.3.2非山崩樣本選取 77
5.3.3分析結果 77
5.3.4成果驗證 85
第六章 討論 88
6.1不同方法產製斜坡單元統計結果比較 88
6.2不同方法產製之斜坡單元進行山崩潛感分析結果比較 108
6.3不同崩壞比門檻值定義山崩及非山崩組山崩潛感分析結果比較 111
第七章 結論與建議 113
7.1結論 113
7.2建議 114
參考文獻 115
參考文獻 水保局(2011b),石門水庫集水區土砂歷程調查及災害評估(3),行政院農業委員會水土保持局,第21-40頁。
王鑫(1988) 地形學,聯經出版事業公司,共356頁。
李錫堤(1989)半球投影及單位向量在地質及岩石工程上之應用,中興工程,第二十四期,第73-98頁。
宋芝萱(2007)順向坡的地形分析及自動萃取,國立中央大學地球科學系學士論文,共21頁。
宋秉憲(2005)以數值高程模型辨識地形之研究,國立政治大學資訊科學學系碩士論文,共59頁。
林文賜、朱豐沂(2009)集水區自動劃分理論之評估與應用,水保技術,第四卷,第二期,第74-80頁。
林淑惠(2010)以超曲面迴歸克利金進行降雨量空間推估,國立中央大學應用地質研究所碩士論文,共179頁。
紀宗吉、林錫宏、蘇品如、張閔翔、周稟珊(2007)山崩敏感區評估之製圖地形單元製作研究。經濟部報告書編號:95008,共39頁。
張弼超(2005),運用羅吉斯迴歸法進行山崩潛感分析-以國姓地區為例,國立中央大學應用地質研究所碩士論文,共134頁,。
莊心凱(2012)結合地貌主題圖層及物件導向式影像分析方法應用於山區氾濫原及周邊區域特徵判釋,國立臺灣大學土木工程學研究所碩士論文,共120頁。
莊雲翰(2002)結合影像區塊及知識庫分類之研究--以IKONOS 衛星影像為例,國立中央大學土木工程研究所碩士論文,共94頁。
黃韋凱(2010)物件導向分析方法應用於遙測影像之分區及崩塌地與人工設施分類,國立臺灣大學應用土木工程學研究所碩士論文,共109頁。
楊奕岑、徐美玲、賴進貴(2005)DEM解析度暨流向演算法對於集流面積計算之影響,地理學報,第39期,第 71-90頁。
劉守恆(2003)衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學系碩士論文,共83頁。
鄭雅文、史天元、蕭國鑫(2003)物件導向分類於高解析度影像自動判釋,航測及遙測學刊,第十三卷,第四期,第273-284 頁。
經濟部中央地質調查所(2007)易淹水地區上游集水區地質調查與資料庫建置-集水區地質調查及山崩土石流調查與發生潛勢評估計畫,第1期,共620頁,
經濟部中央地質調查所(2007)地質敏感區災害潛勢評估與監測─都會區周緣坡地山崩潛勢評估(1/4),經濟部中央地質調查所,共56頁。
經濟部中央地質調查所(2010)地質敏感區災害潛勢評估與監測─都會區周緣坡地山崩潛勢評估(4/4),經濟部中央地質調查所。
簡瑋延(2011)應用物件導向分類方法自動產製斜坡單元,國立中央大學應用地質研究所碩士論文,共74頁。
鐘意晴(2009)區域性山崩潛感分析方法探討-以石門水庫集水區為例,國立中央大學應用地質研究所碩士論文,共172頁。
Agresti, A. (2002) Categorical data analysis (2nd ed.), New York: John Wiley, 710p.
Ahmed, S., Marsily, G. D. (1987) Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity, Water Resources Research, 23, 9, 1717-1737.
Alcantara-Ayala, I. (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries, Geomorphology, 47, 2-4, 107-124.
Aleotti, P., Chowdhury, R. (1999) Landslide hazard assessment: summary review and new perspectives, Bulletin of Engineering Geology and the Environment, 58, 1, 21-44.
Alexander, D. (1991) Applied geomorphology and the impact of natural hazards on the built environment, Natural Hazards, 4, 1, 57-80.
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., Reichenbach, P. (2002) Impact of mapping errors on the reliability of landslide hazard maps, Natural Hazards and Earth System Science , 2, 3-14.
Barlow, J., Franklin, S., Martin, Y. (2006) High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes, Photogrammetric Engineering and Remote Sensing, 72, 6, 687-692.
Barlow, J., Martin, Y., Franklin, S. (2003) Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia, Canadian Journal of Remote Sensing, 29, 510-517.
Bonham-Carter, G. F. (1994) Geographic Information Systems for Geoscientists: Modelling with GIS, Pergamon, Ottawa, 398 p.
Bue, B., Stepinski, T. (2006) Automated classification of landforms on Mars, Computers Geosciences, 32, 5, 604-614.
Burnett, A.D., Brand, E.W., Styles, K.A. (1985) Terrain classification mapping for a landslide inventory in Hong Kong, 4th International Conference and Field Workshop on Landslides, Tokyo, 63-68.
Burnett, C., Blaschke, T. (2003) A multi-scale segmentation/object relationship modelling methodology for landscape analysis, Ecological Modelling, 168, 3, 233-249.
Burrough, P. A., van Gaans, P. F. M., MacMillan, R. (2000) High-resolution landform classification using fuzzy k-means, Fuzzy Sets and Systems, 113, 1, 37-52.
Calvello, M., Cascini, L., Mastroianni, S. (2012) Landslide zoning over large areas from a sample inventory by means of scale-dependent terrain units, Geomorphology, 182, 33-48.
Carrara, A. (1983) Multivariate models for landslide hazard evaluation, Mathematical Geology, 15, 3, 403-426.
Carrara, A. (1988) Drainage and divide networks derived from high-fidelity digital terrain models, NATO ASI series. Series C, Mathematical and Physical Sciences, 223, 581-597.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P. (1991) GIS techniques and statistical models in evaluating landslide hazard, Earth Surface Processes and Landforms, 16, 5, 427-445.
Carrara, A., Cardinali, M., Guzzetti, F., Reichenbach, P. (1995) GIS technology in mapping landslide hazard, Geographical Information Systems In Assessing Natural Hazards. Kluwer Academic Publisher, Dordrecht, 135-176.
Carrara, A., Crosta, G., Frattini, P. (2003) Geomorphological and historical data in assessing landslide hazard, Earth Surface Processes and Landforms, 28, 10, 1125-1142.
Chung, C. F., Fabbri, A. G., Van Westen, C. J. (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara, A., Guzzetti, F. (eds.), Geographical Information Systems in Assessing Natural Hazards. Kluwer Academic Publisher, Dordrecht, The Netherlands, pp. 107-133.
Chung, C. F., Fabbri, A. G. (1999) Probabilistic prediction models for landslide hazard mapping, Photogrammetric Engineering & Remote Seneing, 65, 12, 1389-1399.
Chung, C. F., Fabbri, A. G. (2003) Validation of spatial prediction models for landslide hazard mapping, Natural Hazards 30, 451-472.
Claessens, L., Heuvelink, G., Schoorl, J., Veldkamp, A. (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modelling, Earth Surface Processes and Landforms, 30, 4, 461-477.
Cooke, R. U., Doornkamp, J. C. (1974) Geomorphology in Environmental Management, Clarendon Press, Oxford, 410p
Definiens Imaging (2004) eCognition user Guide 4, Germany, 486p.
Dikau, R. (1989) The Application of a Digital Relief Model to Landform Analysis in Geomorphology, Philadelphia, Taylor & Francis, 219p
Drăguţ, L., Blaschke, T. (2006) Automated classification of landform elements using object-based image analysis, Geomorphology, 81, 3-4, 330-344.
Dymond, J., Derose, R., Harmsworth, G. (1995) Automated mapping of land components from digital elevation data, Earth Surface Processes and Landforms, 20, 2, 131-137.
Dymond, J. R., Harmsworth, G. R. (1994) Towards automated land resource mapping using digital terrain models, ITC Journal, 2, 129-138.
Erener, A., Düzgün, H. S. B. (2012) Landslide susceptibility assessment: what are the effects of mapping unit and mapping method?, Environmental Earth Sciences, 66, 859-877.
Feinberg, S., (1985) The Analysis of Cross-Classified Categorical Data (2nd ed.),Cambridge, MA: MIT Press, 198p.
Flanders, D., Hall-Beyer, M., Pereverzoff, J. (2003) Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction, Canadian Journal of Remote Sensing, 29, 4, 441-452.
Giles, P. T., Franklin, S. E. (1998) An automated approach to the classification of the slope units using digital data. Geomorphology, 21,3-4, 251-264.
Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation, Oxford University Press, New York, 496p.
Guzzetti, F., Reichenbach, P. (1994) Towards a definition of topographic divisions for Italy, Geomorphology, 11, 1, 57-74.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 1-4, 181-216.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., Ardizzone, F. (2005) Probabilistic landslide hazard assessment at the basin scale, Geomorphology, 72, 272-299.
Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., Cardinali, M. (2006a) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Sciences, 6, 115-131.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M. (2006b) Estimating the quality of landslide susceptibility models, Geomorphology, 81, 1-2, 166-184.
Hansen, A. (1984) Landslide hazard analysis, In: Brunsden, D. and Prior, D.B. (eds.), Slope instability, Wiley & Sons, New York, 523-602.
Hansen, A., Franks, C.A.M., Kirk, P.A., Brimicombe, A.J., Tung, F. (1995) Application of GIS to hazard assessment, with particular reference to landslides in Hong Kong, Geographical Information Systems in Assessing Natural Hazards, Kluwer Academic Publisher, Dordrecht, The Netherlands, 135-175.
Imagine, E. (2005) ERDAS Field Guide. Atlanta, Georgia, USA: ERDAS Inc, 770p
Irvin, B. J., Ventura, S. J., Slater, B. K. (1997) Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin, Geoderma, 77, 2-4, 137-154.
Klingseisen, B., Metternicht, G., Paulus, G. (2008) Geomorphometric landscape analysis using a semi-automated GIS-approach, Environmental Modelling Software, 23, 1, 109-121.
Lee, C. T. (2008) GIS Application in Landslide Hazard Analysis, Pacific Neighborhood Consortium (PNC) 2008 Annual Meeting program.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J. (2008a) Statistical approach to earthquake-induced landslide susceptibility, Engineering Geology, 100, 1-2, 43-58.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., (2008b) Statistical approach to storm event-induced landslide susceptibility, Natural Hazard and Earth System Sciences, 8, 941-960.
Lillesand, T. M., Kiefer, R. W. (2000) Remote Sensing and Image Interpretation, Wiley & Sons, New York, 724p.
Long, J. S. (1997) Regression Models for Categorical and Limited Dependent Variables, Thousand Oaks, California: Sage Publications, 297p.
MacMillan, R., Pettapiece, W., Nolan, S., Goddard, T. (2000) A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic, Fuzzy Sets and Systems, 113, 1, 81-109.
Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., Kumar, K. V. (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods, Geomorphology, 116, 1-2, 24-36.
Meijerink, A. (1988) Data acquisition and data capture through terrain mapping units, ITC-Journal (Netherlands ), 1, 23-44.
Odeh, I. O. A., McBratney, A. B., Chittleborough, D. J. (1994) Spatial prediction of soil properties from landform attributes derived from a digital elevation model, Geoderma, 63, 3-4, 197-214.
O’Loughlin, E. M., (1986) Prediction of surface saturation zones in natural catchments by topographic analysis, Water Resources Research, 22, 5, 794-804.
Penck, W., (1953) Morphological Analysis of Landforms: London, MacMillan, 429 p.
Pennock, D. J., Zebarth, B., De Jong, E. (1987) Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada, Geoderma, 40, 3-4, 297-315.
Prima, O. D. A., Echigo, A., Yokoyama, R., Yoshida, T. (2006) Supervised landform classification of Northeast Honshu from DEM-derived thematic maps, Geomorphology, 78, 3-4, 373-386.
Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., Peruccacci, S. (2010) Optimal landslide susceptibility zonation based on multiple forecasts, Geomorphology, 114, 129-142.
Rotigliano, E., Cappadonia, C., Conoscenti, C., Costanzo, D., Agnesi, V. (2012) Slope units-based flow susceptibility model: using validation tests to select controlling factors, Natural hazards, 61, 143-153.
Schmidt, J., Hewitt, A. (2004) Fuzzy land element classification from DTMs based on geometry and terrain position, Geoderma, 121, 3-4, 243-256.
Schneevoigt, N. J., van der Linden, S., Thamm, H. P., Schrott, L. (2008) Detecting Alpine landforms from remotely sensed imagery. A pilot study in the Bavarian Alps, Geomorphology, 93, 1-2, 104-119.
Soille, P. (2004) Morphological Image Analysis, Principles and Applications, 2nd ed, Springer, 391p.
Speight, J. G. (1977) Landform pattern description from aerial photographsm, Photogrammetria, 32, 5, 161-182.
Strahler, A.N. (1952) Dynamic basis of geomorphology, Geological Society of America Bulletin, 63, 9, 923-938.
Swets, J. A. (1988) Measuring the accuracy of diagnostic systems, Science, 240, 4857, 1285-1293.
Van Asselen, S., Seijmonsbergen, A. (2006) Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM, Geomorphology, 78, 3-4, 309-320.
Van Den Eeckhaut, M., Reichenbach, P., Guzzetti, F., Rossi, M., Poesen, J. (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium, Natural Hazards and Earth System Sciences, 9, 507-521.
Van Westen, C. J., Soeters, R., Sijmons, K. (2000) Digital geomorphological landslide hazard mapping of the Alpago area, Italy, International Journal of Applied Earth Observation and Geoinformation, 2, 1, 51-60.
Varnes, D. J. (1978) Slope movement types and processes, Landslides : Analysis and Control, 11-33.
Verstappen, H.T. (1983) Applied Geomorphology: Geomorphological Survey for Environmental Development, Elsevier Scientific Publishing Co., Amsterdam.
Wilson, J. P., Gallant, J. C. (2000) Terrain Analysis: Principles and Applications, John Wiley & Sons, Inc, New York, 479p
Xie, M., Esaki, T., Zhou, G. (2004) GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model, Natural Hazards, 33, 2, 265-282.
Xie, M., Esaki, T., Zhou, G., Mitani, Y. (2003) Geographic information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment, Journal of Geotechnical and Geoenvironmental Engineering, 129, 1109-1118.
Zadeh, L. (1965) Application of fuzzy set theory, Fuzzy Sets, Information and Control, 8, 338-353.
Zhao, M., Li, F., Tang, G. A. (2012) Optimal scale selection for DEM based slope segmentation in the loess plateau, International Journal of Geosciences, 3, 37-43.
指導教授 李錫堤 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明