參考文獻 |
1. H.F. Sterling, R.C.G. Swann “Chemical vapour deposition promoted by r.f. discharge,” Solid State Electron., 8(8) (1965) 653.
2. W.E. Spear, P.G. Le Comber “Substitutional doping of amorphous silicon,” Solid State Commun., 17 (1975) 1193.
3. D. E. Carlson, C. R. Wronski “Amorphous silicon solar cell,” Appl. Phys. Lett., 28 (1976) 671.
4. H. Keppner, J. Meier, P. Torres, D. Fischer, A. Shah “Microcrystalline silicon and micromorph tandem solar cells,” Appl. Phys. A, 69 (1999) 169.
5. J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, A. Shah “Microcrystalline Silicon and The Impact on Micromorph Tandem Solar Cells,” Sol. Energ. Mat. Sol. Cells, 74 (2002) 457.
6. O.Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner “Intrinsic Microcrystalline Silicon A New Material for Photovoltaics,” Sol. Energ. Mat. Sol. Cells, 62 (2000) 97.
7. K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima “Thin Film Si Solar Cell Fabricated At Low Temperature,” J. Non-Cryst. Solids, 266-296 (2000) 1082.
8. B. Rech, T. Roschek, J. Müller, S. Wieder, H. Wagner “Amorphous and Microcrystalline Silicon Solar Cells Prepared at High Deposition Rates Using RF (13.56MHz) Plasma Excitation Frequencies,” Sol. Energ. Mat. Sol. Cells, 66 (2001) 267.
9. D.L. Staebler and C.R. Wronski “Optically induced conductivity changes in discharge‐produced hydrogenated amorphous silicon,” J. Appl. Phys. 51 (1980) 3262.
10. D.L. Staebler and C.R. Wronski “Reversible conductivity changes in discharge‐produced amorphous Si,” Appl. Phys. Lett. 31 (1977) 292.
11. A. KO£ODZIEJ “Staebler–Wronski effect in amorphous silicon and its alloys,” Opto-Electron. Rev, 12(1) (2004) 21.
12. A. Matsuda “Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma,” J. Non-Cryst. Solids, 59-60 (1983) 767.
13. C.C. Tsai, G.B. Anderson, R. Thompson, B. Wacker “Control of silicon network structure in plasma deposition,” J. Non-Cryst. Solids, 114 (1989) 151.
14. K. Nakamura, K. Yoshino, S. Takeoka, I. Shimizu “Roles of Atomic Hydrogen in Chemical Annealing,” Jpn. J. Appl. Phys., 34 (1995) 442.
15. A. Matsuda “Growth mechanism of microcrystalline silicon obtained from reactive plasmas,” Thin Solid Films, 337 (1999) 1.
16. S. Schicho, F. Köhler, R. Carius, A. Gordijn “The Relationship of Structural Properties of Microcrystalline Silicon to Solar Cell Performance,” Sol. Energ. Mat. Sol. Cells, 98 (2012) 391.
17. N.A. Bakr, A.M. Funde, V.S. Waman, M.M. Kamble, R.R. Hawaldar, D.P. Amalnerkar, V.G. Sathe, S.W. Gosavi, S.R. Jadkar “Role of Argon in Hot Wire Chemical Vapor Deposition of Hydrogenated Nanocrystalline Silicon Thin Films,” Thin Solid Films, 519 (2011) 3501.
18. H.P. Zhou, D.Y. Wei, S. Xu, S.Q. Xiao, L.X. Xu, S.Y. Huang, Y.N. Guo, W.S. Yan, M. Xu “Dilution Effect of Ar/H2 on the Microstructures and Photovoltaic Properties of nc-Si:H Deposited in Low Frequency Inductively Coupled Plasma,” J. Appl. Phys., 110 (2011) 023517.
19. D. Wang, Q. Liu, F. Li, Y. Qin, D. Liu, Z. Tang, S. Peng, D. He “Effect of Ar in the Source Gas on the Microstructure and Optoelectronic Properties of Microcrystalline Silicon Films Deposited by Plasma-Enhanced CVD,” Appl. Surf. Sci., 257 (2010) 1342.
20. P. Gogoia, P.N. Dixitb, P. Agarwal “Amorphous Silicon Films with High Deposition Rate Prepared Using Argon and Hydrogen Diluted Silane for Stable Solar Cells,” Sol. Energ. Mat. Sol. Cells, 91 (2007) 1253.
21. L. Prušáková, V. Vavruňková, M. Netrvalová, J. Müllerová, P. Šutta “Optical and Structural Characterization of Inhomogeneities in a-Si:H to μc-Si Transition,” Vacuum, 85 (2010) 502.
22. V. Vavrunkova, G.V. Elzakker, M. Zeman, P. Sutta “Medium-range Order in a-Si H Films Prepared from Hydrogen Diluted Silane,” Phys. Status Solidi A, 207(3) (2010) 548.
23. M. Fukawa, S. Suzuki, L. Guo, M. Kondo, A. Matsuda “High Rate Growth of Microcrystalline Silicon Using High-Pressure Depletion Method with VHF Plasma,” Sol. Energ. Mat. Sol. Cells,66 (2001) 217.
24. A.M. Funde, N.A. Bakr, D.K. Kamble, R.R. Hawaldar, D.P. Amalnerkar, S.R. Jadkar “Influence of Hydrogen Dilution on Structural, Electrical and Optical Properties of Hydrogenated Nanocrystalline Silicon (nc-Si:H) Thin Films Prepared by Plasma Enhanced Chemical Vapour Deposition (PE-CVD),” Sol. Energ. Mat. Sol. Cells, 92 (2008) 1217.
25. I. Sakata, M. Yamanaka, Y. Hayashi “Properties of hydrogenated amorphous silicon prepared by alternatively repeating chemical‐vapor deposition from disilane and hydrogen plasma treatment,” J. Appl. Phys., 74 (1993) 2543.
26. J. Li, J. Wang, M. Yin, P. Gao, D. He, Q. Chen, Y. Li, H. Shirai “Deposition of Controllable Preferred Orientation Silicon Films on Glass by Inductively Coupled Plasma Chemical Vapor Deposition,” J. Appl. Phys., 103 (2008) 043505.
27. K. Kandoussi, C. Simon, N. Coulon, K. Belarbi, T.M. Brahim “Nanocrystalline Silicon TFT Process Using Silane Diluted in Argon-Hydrogen Mixtures,” J. Non-Cryst. Solids, 354 (2008) 2513.
28. W.J. Soppe, C. Devilee, M. Geusebroek, J. Löffler, H.-J. Muffler “The Effect of Argon Dilution on Deposition of Microcrystalline Silicon by Microwave Plasma Enhanced Chemical Vapor Deposition,” Thin Solid Films, 515 (2007) 7490.
29. J Hopwood “Review of inductively coupled plasmas for plasma processing,” Plasma Sources Sci. Technol., 1 (1992) 109.
30. Y. Setsuhara, S. Miyake, Y. Sakawa, T. Shoji “Production of Inductively-Coupled Large-Diameter Plasmas with Internal Antenna,” Jpn. J. Appl. Phys., 38 (1999) 4263.
31. M. Kanoh, K. Suzuki, J. Tonotani, K. Aoki, M. Yamage “Inductively Coupled Plasma Source with Internal Straight Antenna,” Jpn. J. Appl. Phys., 40 (2001) 5419.
32. H. Kaki, A. Tomyo, E. Takahashi, T. Hayashi, K. Ogata, A. Ebe, K. Takenaka, Y. Setsuhara “Interface Structure of Microcrystalline Silicon Deposited by Inductive Coupled Plasma Using Internal Low Inductance Antenna,” Surf. Coat. Tech., 202 (2008) 5672.
33. H.M. Mott-Smith, I. Langmuir “The Theory of Collectors in Gaseous Discharges,” Phys. Rev., 28 (1926) 727.
34. P.A. Miller, M.E. Riley “Dynamics of collisionless rf plasma sheaths,” J. Appl. Phys. 82 (1997) 3689.
35. J.M. Hendron, C.M.O. Mahony, T. Morrow, W.G. Graham “Langmuir probe measurements of plasma parameters in the late stages of a laser ablated plume,” J. Appl. Phys. 81 (1997) 2131.
36. I. Langmuir “The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths,” Phys. Rev., 33 (1929) 954.
37. F. Tochikubo, A. Suzuki, S. Kakuta, Y. Terazono, T. Makabe “Study of the structure in rf glow discharges in SiH4/H2 by spatiotemporal optical emission spectroscopy- Influence of negative ions,” J. Appl. Phys., 68 (1990) 5532.
38. Y.J. Kim, Y.S. Choi, K.S. Shin, S.H. Cho, I.S. Choi, J.G. Han “High Deposition Rate Microcrystalline Silicon Films Prepared by Magnetic Mirror Assisted RF-PECVD,” Curr. Appl. Phys., 10 (2010) S354.
39. S.Y. Lien, Y.Y. Chang, Y.S. Cho, J.H. Wang, K.W. Weng, C.H. Chao, C.F. Chen “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies” J. Non-Cryst. Solids, 357(2011) 161.
40. V.S. Waman, M.M. Kamble, M.R. Pramod, S.P. Gore, A.M. Funde, R.R. Hawaldar, D.P. Amalnerkar, V.G. Sathe, S.W. Gosavi, S.R. Jadkar “Influence of The Deposition Parameters on The Microstructure and Opto-Electrical Properties of Hydrogenated Nanocrystalline Silicon Films by HW-CVD,” J. Non-Cryst. Solids, 357 (2011) 3616.
41. N. Kosku, S. Miyazaki “Insights into The High-Rate Growth of Highly Crystallized Silicon Films From Inductively Coupled Plasma of H2-diluted SiH4,” Thin Solid Films, 511-512 (2006) 265.
42. Z. Wua, J. Sunb, Q. Leia, Y. Zhaob, X. Gengb, J. Xi “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy,” Physica E, 33 (2006) 125.
43. B.Y. Moon, J. H. Youn, S.H. Won, J. Jang “Polycrystalline silicon film deposited by ICP-CVD,” Sol. Energ. Mat. Sol. Cells, 69 (2001) 139.
44. Y. Qin, H. Yan, F. Li, L. Qiao, Q. Liu, D. He “The optoelectronic properties of silicon films deposited by inductively coupled plasma CVD,” Appl. Surf. Sci., 257 (2010) 817.
45. J. Wanga, P. Gaoa, M. Yina, Y. Qina, H. Yana, J. Li, S. Penga, D. He “Low-temperature deposition of highly crystallized silicon films on Al-coated polyethylene napthalate by inductively coupled plasma CVD,” J. Alloy. Compd., 481 (2009) 278.
46. S. Mukhopadhyay, C. Das, Swati Ray “Structural Analysis of Undoped Microcrystalline Silicon Thin Films Deposited by PECVD Technique,” J. Phys. D: Appl. Phys. 37 (2004) 1736.
47. S. Y. Myong, O. Shevaleevskiy, K.S. Lim, S. Miyajima, M. Konagai “Charge Transport in Hydrogenated Boron-Doped Nanocrystalline Silicon Carbide Alloys,” J. Appl. Phys., 98 (2005) 054311.
48. U.K. Das, P. Chaudhuri “Optical Emission Spectroscopic Study of a Radio-Frequency Plasma of Ar+SiH4,” Chem. Phys. Lett., 298 (1998) 211.
49. S. Nakamura, K. Matsumoto, A. Susa, M. Koshi “Reaction Mechanism of Silicon Cat-CVD,” J. Non-Cryst. Solids, 352 (2006) 919.
50. S. Tange, K. Inoue, K. Tonokura, M. Koshi “Catalytic Decomposition of SiH4 on a Hot Filament,” Thin Solid Films, 395 (2011) 42.
51. P.A.T.T. van Veenendaal, R.E.I. Schropp “Processes in Silicon Deposition by Hot-Wire Chemical Vapor Deposition,” Curr. Opin. Solid St. M., 6 (2002) 465.
52. K. Tonokura, M. Koshi “Reaction Kinetics in Silicon Chemical Vapor Deposition,” Curr. Opin. Solid St. M., 6 (2002) 479.
53. M.J. Kushner “A model for the discharge kinetics and plasma chemistry during plasma,” J. Appl. Phys. 63 (1988) 2532.
54. N.A. Bakr, A.M. Funde, V.S. Waman, M.M. Kamble, R.R. Hawaldar, D.P. Amalnerkar, V.G. Sathe, S.W. Gosavi, S.R. Jadkar “Role of Argon in Hot Wire Chemical Vapor Deposition of Hydrogenated Nanocrystalline Silicon Thin Films,” Thin Solid Films, 519 (2011) 3501.
55. W. Li, D. Xia, H. Wang, X. Zhao “Hydrogenated Nanocrystalline Silicon Thin Film Prepared by RF-PECVD at High Pressure,” J. Non-Cryst. Solids, 356 (2010) 2552.
56. M.J. McCaughey, M.J. Kushner “Simulation of the bulk and surface properties of amorphous hydrogenated silicon deposited from silane plasmas,” J. Appl. Phys. 65 (1989) 186.
57. L. Sansonnenst, A.A. Howlingt, Ch. Hollensteint, J-L Doriert, U. Kroll “The role of metastable atoms in argon-diluted silane radiofrequency plasmas,” J. Phys. D: Appl. Phys. 27 (1994) 1406.
58. J, Tauc, R. Grigorovici, A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status. Solidi. 15(2) (1966) 627.
59. J. Tauc, “Optical Properties and Electronic Structure of Amorphous Ge and Si,” Mater. Res. Bull. 3 (1968) 37.
60. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, “Electrical and Optical Properties of TiO2 Anatase Thin Films,” J. Appl. Phys., 75(4) (1994) 2042.
61. M. M. Rahman, K. M. Krishna, T. Soga, T. Jimba, M. Umeno, “Optical Properties and X-Ray Photoelectron Spectroscopic Study of Pure and Pb-Doped TiO2 Thin Films,” J. Phys. Chem. Solid., 60(2) (1999) 201.
62. P. Sharma, M. Vashistha, I. P. Jain,” Optical Properties of Ge20Se80-XBix Thin Films,” J. Optoelect. Adv. Mater. 7(5) (2005) 2647.
63. J. Yu, J. Xiong, B. Cheng, S. Liu, “Fabrication and Characterization of Ag–TiO2 Multiphase Nanocomposite Thin Films with Enhanced Photocatalytic Activity,” Appl. Catal. B, 60(3-4) ( 2005) 211.
64. J. R. Bellingham, W. A. Phillips, C. J. Adkins, “Electrical and Optical Properties of Amorphous Indium Oxide,” J. Phys.: Condens. Matter 2 (1990) 6207. |