博碩士論文 100356017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.119.120.59
姓名 曾怡玲(Chen-yi Lin)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 利用改質氧化鈣吸附二氧化碳之效率探討
(Investigation on CO2 capture efficiencies achieved with modified calcium oxides materials)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著地球暖化逐漸加劇,降低CO2排放為現今世界各國努力的目標,而發展CO2捕獲關鍵技術為減排技術之重要研究方向。中高溫捕獲CO2可降低能損,並具有吸附質含量高(約10-15% CO2)之優點,此技術又以含氧化鈣材料最具有優勢。因此,利用高性能吸附材料進行CO2捕獲,未來也必然成為重要趨勢之一。文獻指出高溫劣化為氧化鈣捕獲CO2之缺點,將嚴重降低捕碳劑之長期穩定性。
本研究針對二氧化碳捕捉技術開發,探討含氧化鈣中高溫吸附材料製備及其CO2吸脫附效率。利用共沉法將三種鈣離子前驅物與鋁離子前驅物共沉後,再經由高溫煅燒處理,以生成層狀Ca-Al-CO3吸附劑。同時針對自製層狀Ca-Al-CO3吸附劑進行BET、XRD、SEM 等特性分析及利用TGA 測試CO2吸附效率,以進行二氧化碳吸附效能之評估。結果顯示三種吸附劑係為中孔洞吸附劑之吸附行為。由實驗結果得知,三種吸附劑最適吸附溫度皆落在750°C,起始吸附量以(Ca-Al-CO3/CaO) (55.8%)最高,其次Ca(OAc)2-LDH (52.1%),最差者為Ca(NO3)2-LDH (46.9%)。(Ca-Al-CO3/CaO)不但具有最佳的捕碳性能,經過40 次的吸脫附測試後,仍維持96%穩定性之優越性能。未來若能將此技術用於含氧化鈣之礦物改質,將成為極具有潛力之碳捕獲技術。
關鍵字:二氧化碳捕獲;吸附劑;氧化鈣;Ca-Al-CO3;熱重分析
摘要(英) Combustion of fossil fuel causes increasing atmospheric CO2 concentration and induces man-made greenhouse effect, hence, developing effective technique for CO2 capture to mitigate its emission has become an important issue. The medium-high temperature CO2 capture technique has the major advantage of decreasing the energy penalty and is of a high capture efficiency at a high CO2 concentration (ca. 15-50%CO2). Material containing CaO is a promising candidate for adsorbing CO2 under elevated temperature, which should be a promising trend in the future. Previous study indicates that the sintering of CaO at high temperature is the major reason for the decay of CO2 capture, resulting in the poor stability of sorbent. This research aims to develop an effective CO2 capturing technology via the preparation and testing of CaO-based layer double hydroxides (LDHs) sorbents. This study focuses on the development of a Ca-Al-CO3 sorbent derived from three kinds of precursors: (I) (Ca-Al-CO3/CaO) (II) Ca(OAc)2-LDH and (III) Ca(NO3)2-LDH. Ca+2 ions are incorporated into layered structure by co-precipitation of Al (NO3)3•9H2O and Na2CO3 under alkaline conditions. The characteristics of synthesized sorbents such as surface area, morphology/particle size and crystalline are determined by BET (Quantachrome), SEM (Hitachi) and PXRD (Bruker), respectively. Sorption properties of CO2 on CaO are monitored by recording weight change of sorbent with a Thermo-gravimetric analyzer (TGA, Netzsch) operated at alternately cycling experiments of adsorption and desorption for CO2 capture. The results showed that the microscopic characters of sorbents were mainly mesoporous. CO2 sorption capacities (g CO2/g sorbent) at 750 °C were in the range of 0.524-0.672 and they were significantly related to sorbents, wherein (Ca-Al-CO3/CaO) (55.8%) >Ca(OAc)2-LDH (52.1%) > Ca(NO3)2-LDH (46.9%). The best Ca-Al-CO3 sorbent was from (Ca-Al-CO3/CaO) that provided at least 96% CO2 sorption recovery after 40 adsorption/desorption cycles. These materials are worthy to be further studied for the modification of alkaline minerals as a potential CO2 sorbent.
Keywords: CO2 capture; Adsorbents; CaO; Ca-Al-CO3 ; Thermal gravimetric analysis(TGA).
關鍵字(中) ★ 二氧化碳捕獲
★ 吸附劑
★ 氧化鈣
★ 熱重分析
關鍵字(英) ★ CO2 capture
★ Ca-Al-CO3
★ Adsorbents
★ Thermal gravimetric analysis
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 xi
表目錄 xiii
第一章 前言 1
1.1研究起緣 1
1.2研究目的 3
第二章 文獻回顧 5
2.1溫室效應簡介 5
2.1.1溫室效應 5
2.1.2溫室效應氣體 6
2.2二氧化碳捕獲路徑 7
2.2.1 燃燒後捕獲 8
2.2.2 燃燒前捕獲 8
2.2.3 富氧燃燒 9
2.3二氧化碳捕獲技術 10
2.3.1 化學方式 10
2.3.2 物理方式 11
2.4 二氧化碳吸附材料簡介 13
2.4.1 固體吸附劑特性 16
2.4.2 層狀水滑石 (Layered double hydroxide, LDH) 20
2.5 吸附材料之選擇 21
2.5.1 中高溫吸附材料 22
2.5.2 吸附材料 (吸附劑) 所需特性 23
2.6 氧化鈣改質之探討 24
第三章 實驗方法 29
3.1研究流程 29
3.2實驗設備及藥品 30
3.3材料製備 31
3.4 實驗步驟與方法 33
3.4.1 氧化鈣改質捕碳劑合成-氧化鈣(A吸附劑) 33
3.4.2 含氧化鈣層狀捕碳劑合成-醋酸鈣(B吸附劑) 34
3.4.3 含氧化鈣層狀捕碳劑合成-硝酸鈣(C吸附劑) 35
3.5 吸附劑之鑑定分析 36
3.5.1 TGA 吸附/脫附測試 36
3.5.2 比表面積、孔隙體積及孔徑大小分佈(BET) 37
3.5.3 X 射線繞射(XRD)分析 37
3.5.4 掃描式電子顯微鏡(SEM)形貌觀察分析分析 38
第四章 實驗結果與討論 40
4.1 含氧化鈣層狀捕碳劑合成與分析-氧化鈣(A吸附劑) 40
4.1.1 TGA 吸附/脫附測試 40
4.1.2 吸附劑比表面積特性分析(BET) 44
4.1.3 X 射線繞射結構特性(XRD) 46
4.1.4 掃描式電子顯微鏡(SEM) 48
4.2 含氧化鈣層狀捕碳劑合成與分析-醋酸鈣(B吸附劑) 50
4.2.1 TGA 吸附/脫附測試 50
4.2.2 吸附劑比表面積特性分析(BET) 53
4.2.3 X射線繞射結構特性(XRD) 54
4.2.4 掃描式電子顯微鏡(SEM) 56
4.3 含氧化鈣層狀捕碳劑合成-硝酸鈣(C吸附劑) 59
4.3.1 TGA 吸附/脫附測試 59
4.3.2 起始吸附量及穩定性分析 60
4.3.3 吸附劑比表面積特性分析(BET) 62
4.3.4 X 射線繞射結構特性(XRD) 68
4.3.5 掃描式電子顯微鏡(SEM) 70
4.4 三種(A、B、C)吸附劑比較與綜合討論 72
4.4.1 三種(A、B、C)吸附劑比較 72
4.4.2 三種(A、B、C)吸附劑綜合討論 73
4.4.3 三種(A、B、C)吸附劑成本分析及起始吸附之比較 75
4.4.4 三種(A、B、C)吸附劑成本分析及穩定性比較 77
第五章 結論與建議 81
5.1 結論 81
5.2 建議 84
參考文獻 85
參考文獻 Aaron, D. and Tsouris, C., “Separation of CO2 from flue gas: A review”, Separation Science and Technology, 2005, 40, 321-348.
Auroux, A., Gervasini, A., “Microcalorimetric study of the acidity and basicity of metal oxide surfaces”, Journal Physical Chemistry, 1990, 94, 6371-6379.
Balat, M., Balat, H., and Oz, C. “Applications of carbon dioxide captureand storage technologies in reducing emissions from fossil-fired power plants”, Energy Sources, Part A, 2009, 31, 1473-1486.
Banerjee, R., Phan, A., Wang, B., Knobler, C.; Furukawa, H.; O’Keeffe, M. “High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture”, Science, 2008, 319, 939-943.
Burchell, T. D.; Judkins, R. R.; Rogers, M. R.; Williams, A. M. “A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures” , Carbon, 1997, 35,1279-1294.
Chang, P. H., Chang, Y. P., Chen, S. Y., Yu, C. T., and Chyou, Y. P., “Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity”, CHEMSUSCHEM, 2011, 4, 1844-1851.
Feng, B., An, H., and Tan, E. “Screening of CO2 adsorbing materials for zero emission power generation systems”, Energy & Fuels, 2007, 21, 426-434.
Feng, B., Liu, W., Li, X., and An, H., “Overcoming the problem of loss-in-capacity of calcium oxide in CO2 capture”, Energy & Fuels, 2006, 20, 2417-2420.
Granite E. J., and O’Brien, T. “Review of novel methods for carbon dioxide separation from flue and fuel gases”, Fuel Processing Technology, 2005, 86, 1423-1434.
Gupta H., and Fan, L.-S. “Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas”, Industrial & Engineering Chemistry Research, 2002, 41, 4035-4042.
Huang, C. H., Changa, K. P.,Yu, C.T., Chiang, P. C., and Wang, C.F., “Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica”, Chemical Engineering Journal, 2010, 161, 129-135.
Hutson, N. D., Attwood, B. C., “High temperature adsorption of CO2 on various hydrotalcite-like compounds”, Adsorption, 2008, 14, 781-789.
IPCC, “IPCC special report on carbon dioxide capture and storage”, Sep. 2005, Available at http://www.ipcc.ch/index.htm.
Keller, C. F., “Global warming: a review of this mostly settled issue”, Stochastic Environmental Research Risk Assessment, 2009, 23, 643-676.
Kuramoto, K., Shibano, S., Fujimoto, S., Kimura, T., Suzuki, Y., Hatano, H., Shi-Ying, L., Harada, M., Morishita, K., Takarada, T., “Deactivation of Ca-Based sorbents by coal-derived minerals during multicycle CO2 sorption under elevated pressure and temperature”, Industrial & Engineering Chemistry Research, 2003, 42, 3566.
Li, Z.-S., Cai, N.-S., Huang, Y.-Y., “Effect of preparation carbonation- calcination cycles for a new Ca-based CO2 sorbent”, Industrial & Engineering Chemistry Research, 2006, 45, 1911-1917.
Li, Z.-S., Cai, N.-S., Huang, Y.-Y., Han, H.-J., “Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent”, Energy & Fuels, 2005, 19, 1447-1452.
Livengood, C. D., Doctor, R. D., Molburg, J. C., Thimmapuram, P., Berry, G. F., “The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems”, The 87th Annual Meeting & Exhibition of A & WMA, 1994.
Lu, C., Bai, H., Wu, B., Su, F., Hwang, J. F. “Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites” Energy & Fuels, 2009(a), 22, 3050-3056.
Lu, H., Khan, A., Pratsinis, S. E., Smirniotis, P. G. “Flame-made durable doped-CaO nanosorbent for CO2 capture”, Energy & Fuels, 2009(b), 23, 1093-1100.
Lu, H., Reddy, E. P., Smirniotis, P. G. “Calcium oxide based sorbents for capture of carbon dioxide at high temperature”, Industrial & Engineering Chemistry Research, 2006, 45, 3944-3949.
Lysikov, A. I., Salanov, A. N., Okunev, A. G., “Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles”, Industrial & Engineering Chemistry Research, 2007, 46, 4633-4638.
Manovic V., and Anthony, E. J. “Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles”, Environmental Science and Technology, 2007, 41, 1420-1425.
Martavaltzi, C. S., Lemonidou, A. A. “Development of new CaO based sorbent materials for CO2 removal at high temperature”, Microporous and Mesoporous Materials, 2008, 110,119-127.
Nakashima, M., Shimada, S., Inagaki, M., Centeno, T. A., “On the adsorption of CO2 by molecular sieve carbons—Volumetric and gravimetric studies”, Carbon 1995, 33, 1301-1306.
Paul, S., Ghoshal, A. K., Mandal, B. “Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flatsheet membrane contactor (FSMC)”, Chemical Engineering Journal, 2008, 144, 352-360.
Reddy, M. K., Xu, Z. P., Lu, G.Q., Costa, J. C., “Layered double hydroxides for CO2 capture: structure evolution and regeneration”, Industrial & Engineering Chemistry Research, 2006, 45, 7504-7509.
Sircar, S., Golden, T. C., Rao, M. B. “Activated carbon for gas separation and storage”, Carbon, 1996, 34, 1-12.
Song, C. “Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing”, Catalysis Today, 2006, 115, 2-32.
Stanmore, B. R., and Gilot, P. “Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration”, Fuel Processing Technology, 2005, 86, 1707-1743.
Stewart, C., and Hessami, M. “A study of methods of carbon dioxide capture an sequestration-the sustainability of a photosynthetic bioreactor approach”, Energy Conversion and Management, 2005, 46, 403-420.
Tarka, T. J., Ciferno, J. P., Gray, M. L., Fauth, D. “ CO2 capture systems using amine enhanced solid sorbents”, Presented at the Fifth Annual Conference on Carbon Capture & Sequestration, Alexandria, VA, USA, 2006, 152, 30 .
White, C. M., Strazisar, B. R., Granite, E. J., Hoffman, J. S., Pennline, H. W. “Separation and capture of CO2 from large stationary sources and sequestration in geological formations–coalbeds and deep saline aquifers”, Journal of the Air & Waste Management Association, 2003, 53, 645-715.
Yang, H. Q., Xu, Z. H., Fan, M. H., Gupta, R., Slimane, R. B., Bland, A. E., Wright, I. “Progress in carbon dioxide separation and capture: A review” , Journal of Environmental Sciences-China, 2008, 20,14-27.
Yang, S. and Xiao, Y. “Steam catalysis in CaO carbonation under low steam partial pressure”, Industrial & Engineering Chemistry Research, 2008, 47, 4043-4048.
Yong, Z., Mata, V., Rodrigues A., “Adsorption of carbon dioxide at high temperature—a review”, Separation and Purification Technology. 2002, 26, 195-205.
余慶聰、邱耀平,氧化鈣系奈米材料於中高溫二氧化碳捕捉技術之研究,化學,第六十七卷第二期,189-197,中華民國98年。
林鎮國,”二氧化碳的儲存”科學發展,2007 年5 月,第413 期,pp.28-33。
洪瑛鍈、藍啟仁,”物理方法固定二氧化碳的現況” 台電工程月刊,民國90 年,第629 期,pp.76~90。
徐恆文,“二氧化碳的捕獲與分離"科學發展,2007 年5 月,第413
期,pp.24-27。
張博學,陳三元,余慶聰,邱耀平,奈米層狀水滑石於中高溫二氧化碳捕集之研究,中國材料年會,2010 。
陳俞君,「中孔洞複合材料之合成。分析與對二氧化碳吸附之研究」,國立交通大學材料工程學系碩士學位論文,2010。
陳奕岑,”以改質氧化鈣捕獲二氧化碳氣體之循環再生能力研究”國立交通大學環境工程研究所碩士學位論文,民國97 年7 月。
彭柏洋,「中孔洞二氧化碳吸附之開發」,崑山科技大學綠色材料研究所碩士學位論文,2010。
萬曉明,游宗翰,陳建志,許妙行,林東緯,談駿嵩,楊鏡堂,減碳科技之前瞻發展,科技發展政策報導,第3期,27-48頁,2008。
蕭敬達,鄧熙聖,蛇紋石製氫氧化鎂封存二氧化碳之研究及矽酸鋰型二氧化碳吸收劑的開發,國立成功大學化學工程學系,碩士學位論文,中華民國97年7月。
賴思嘉,余慶聰,邱耀平,CaO/γ-Al2O3、CaO/SiO2高溫吸附材料之研製與鑑定,核能研究所報告,INER-5748,中華民國97年。
指導教授 張木彬 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明