博碩士論文 993202017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.12.34.150
姓名 曾靖紘(Jing-Hung Tzeng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用多項式滾動支承之隔震橋梁研究
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ Numerical Simulation of Bridges with Inclined★ 橋梁三維極限破壞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 傳統滑動隔震支承已被廣泛應用,且具有相當良好之隔震效果,但易與近斷層產生低頻共振現象,減低其隔震效能。前人研究具變頻特性之隔震支承可有效改善傳統隔震支承於近斷層地震之隔震效果,但仍有支承摩擦材選用不易的問題。本文採用多項式滾動隔震支承(Polynomial Rocking Bearing, PRB),PRB隔震支承之滾動曲面為六次多項式構成,具變頻特性,其遲滯迴圈有軟化段及硬化段之不同隔震效果,軟化段可降低結構物加速度反應,硬化段可抑制支承鉅大位移量,此外,改變PRB幾何性質亦可輕易調整其等效水平摩擦係數,因此摩擦材可任意選擇,增加支承之可靠度及耐用度。
根據前人研究已證實PRB對建築結構具有良好之隔震效果,尚未有應用於橋梁之實例。本研究以實驗結果驗證PRB理論與數值分析之正確性,依據日本道路橋示方書建立一座橋梁模型,使用PSO-SA混和搜尋法求得PRB支承最佳設計參數,並比較傳統摩擦單擺支承(Friction Pendulum System, FPS)與PRB之隔震效益。
摘要(英) Conventional sliding isolators are widely used and effective to reduce seismic hazard, but it may not be effective when the structures are subjected to near-field ground motions because the pulse periods ground motions are usually close to the isolation periods of the isolators, and it may lead isolated structures to resonate with the ground motions. Various frequency sliding isolators could improve the performance of seismic isolation under near-field ground motions, but chosen friction materials were a difficult issue. In this study is using Polynomial Rocking Bearing (PRB). The rocking surface of PRB consists of six-order polynomial. The restoring stiffness possesses two sections: softening section and hardening section. The structural acceleration response can be reduced by decreasing the restoring stiffness, while the structural displacement response can be reduced by increasing the restoring stiffness of PRB. PRB equivalent horizontal friction coefficient can be easily adjusted via the bearing geometry, so the friction material can be arbitrarily chosen, increasing the isolator reliability and durability.
According to previous studies the PRB effective to reduce seismic hazard on building structure, but it is not yet used in the bridges. In this study, PRB experimental results verify the accuracy of theoretical and numerical analysis. Find out the optimal parameters of PRB by using PSO-SA hybrid algorithm, and compare the isolation effectiveness between PRB and Friction Pendulum System (FPS).
關鍵字(中) ★ 滾動支承
★ 變曲率隔震支承
★ 變頻式隔震支承
★ 近域震波
★ 振動台實驗
關鍵字(英)
論文目次 目 錄
摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表 目 錄 VII
圖 目 錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 4
1.3 研究內容 6
第二章 多項式滾動支承 8
2.1 前言 8
2.2 支承力學行為 8
2.3 多項式滾動支承曲面函數與等效水平摩擦係數 13
第三章 數值分析模型與分析方法 17
3.1 橋梁數值分析模型 17
3.2 運動方程式推導 17
第四章 橋梁模型振動台實驗 24
4.1 實驗設備與實驗試體 24
4.2 實驗量測儀器及配置 26
4.3 實驗試體系統識別 26
4.4 輸入震波 27
4.5 實驗結果與數值模擬比對 28
4.6 實驗結果與隔震效能探討 32
第五章 PRB最佳化設計 78
5.1 PSO-SA混合式搜尋法 78
5.1.1最佳化問題數學模式之建立 78
5.1.2粒子群演算法(Particle Swarm Optimization,PSO)79
5.1.3模擬退火法(Simulated Annealing,SA) 82
5.1.4 PSO-SA混合式搜尋法 83
5.2 目標橋梁及分析震波 84
5.3 支承最佳參數目標函數 85
5.4 FPS搜尋參數設定 86
5.5 PRB搜尋參數設定 87
5.6 數值分析結果與討論 87
第六章 結論與建議 105
6.1 結論 105
6.2 建議 106
參考文獻 108
附錄 A 115
附錄 B 121
附錄 C 128

表 目 錄
表4-1 震動台規格表 34
表4-2 PRB支承參數表 34
表4-3 橋梁試體參數表 35
表4-4 量測儀器數量編號及配置 35
表4-5 實驗用震波特性及PGA值 36
表4-6 Case1實驗與數值分析有無加加入垂直向慣性力誤差RMSE值 36
表4-7 Case2實驗與數值分析有無加加入垂直向慣性力誤差RMSE值 37
表4-8 實驗與數值分析誤差RMSE值 37
表4-9 實驗數據位移最大值 38
表4-10 使用PRB隔震與無隔震橋隔震效率比較表 38
表5-1 目標橋梁參數 90
表5-2 各震波下PSO-SA搜尋之PRB最佳參數 90
表5-3 各震波下PSO-SA搜尋之FPS最佳參數 91
表5-4 各震波下使用PRB與FPS之隔震橋最大位移反應 91
表5-5 各震波下使用PRB與FPS之隔震橋最大基底剪力 92
表C-1 收錄之實驗與分析內容 128
圖 目 錄
圖2-1 PRB支承之構件示意圖 15
圖2-2 支承自由體圖 15
圖2-3 PRB支承回復力曲線 16
圖3-1 「橋墩-支承-橋面板」系統 22
圖3-2 簡化橋梁數學模型 22
圖3-3 (a)上部,(b)下部 結構之運動自由體圖 23
圖4-1 試體模型 39
圖4-2 橋面板與質量塊 39
圖4-3 試體橋柱 40
圖4-4 PRB隔震支承 40
圖4-5 結構試體配置圖 41
圖4-6 加速規 42
圖4-7 雷射位移計 42
圖4-8 LVDT 42
圖4-9 應變計 42
圖4-10 自製Load cell 42
圖4-11 NI Compact DAQ 42
圖4-12 測量儀器配置圖 43
圖4-13 Case1自振反應譜 43
圖4-14 Case2自振反應譜 43
圖4-15 Case1自由震盪位移圖 43
圖4-16 Case2自由震盪位移圖 43
圖4-17 實驗用震波 44.45
圖4-18 Case1實驗所量測得上部結構垂直向慣性力 46.47
圖4-19 Case2實驗所量測得上部結構垂直向慣性力 48.49
圖4-20 Case1於El Centro震波,PGA 307gal (無垂直向分析) 50
圖4-21 Case1於El Centro震波,PGA 307gal (加入垂直向分析) 51
圖4-22 Case2於El Centro震波,PGA 307gal (無垂直向分析) 52
圖4-23 Case2於El Centro震波,PGA 307gal (加入垂直向分析) 53
圖4-24 Case1於Hachinohe震波,PGA 225gal (無垂直向分析) 54
圖4-25 Case1於Hachinohe震波,PGA 225gal (加入垂直向分析) 55
圖4-26 Case2於Hachinohe震波,PGA 225gal (無垂直向分析) 56
圖4-27 Case2於Hachinohe震波,PGA 225gal (加入垂直向分析) 57
圖4-28 Case1於Imperial Valley震波,PGA 350gal (無垂直向分析) 58
圖4-29 Case1於Imperial Valley震波,PGA 350gal (加入垂直向分析) 59
圖4-30 Case2於Imperial Valley震波,PGA 350gal (無垂直向分析) 60
圖4-31 Case2於Imperial Valley震波,PGA 350gal (加入垂直向分析) 61
圖4-32 Case1於JMA Kobe震波,PGA 300gal (無垂直向分析) 62
圖4-33 Case1於JMA Kobe震波,PGA 300gal (加入垂直向分析) 63
圖4-34 Case2於JMA Kobe震波,PGA 300gal (無垂直向分析) 64
圖4-35 Case2於JMA Kobe震波,PGA 300gal (加入垂直向分析) 65
圖4-36 Case1於Sylmar震波,PGA 250gal (無垂直向分析) 66
圖4-37 Case1於Sylmar震波,PGA 250gal (加入垂直向分析) 67
圖4-38 Case2於Sylmar震波,PGA 250gal (無垂直向分析) 68
圖4-39 Case2於Sylmar震波,PGA 250gal (加入垂直向分析) 69
圖4-40 Case1於TCU068震波,PGA 250gal (無垂直向分析) 70
圖4-41 Case1於TCU068震波,PGA 250gal (加入垂直向分析) 71
圖4-42 Case2於TCU068震波,PGA 250gal (無垂直向分析) 72
圖4-43 Case2於TCU068震波,PGA 250gal (加入垂直向分析) 73
圖4-44 Case1於Northridge震波,PGA 350gal (無垂直向分析) 74
圖4-45 Case1於Northridge震波,PGA 350gal (加入垂直向分析) 75
圖4-46 Case2於Northridge震波,PGA 350gal (無垂直向分析) 76
圖4-47 Case2於Northridge震波,PGA 350gal (加入垂直向分析) 77
圖5-1 五跨連續橋梁 93
圖5-2 上部結構斷面圖 93
圖5-3 鋼筋混凝土橋墩圖 94
圖5-4 El Centro震波下PRB最佳支承 95
圖5-5 Hachinohe震波下PRB最佳支承 95
圖5-6 Imperial Valley震波下PRB最佳支承 95
圖5-7 JMA Kobe震波下PRB最佳支承 96
圖5-8 Sylmar震波下PRB最佳支承 96
圖5-9 TCU068震波下PRB最佳支承 96
圖5-10 Northridge震波下PRB最佳支承 97
圖5-11 橋梁於El Centro震波下反應 98
圖5-12 橋梁於Hachinohe震波下反應 99
圖5-13 橋梁於Imperial Valley震波下反應 100
圖5-14 橋梁於JMA Kobe震波下反應 101
圖5-15 橋梁於Sylmar震波下反應 102
圖5-16 橋梁於TCU068震波下反應 103
圖5-17 橋梁於Northridge震波下反應 104
圖A-1 座標轉換關係圖 120
圖C-1 Case1於El Centro震波,PGA 200gal (加入垂直向分析) 129
圖C-2 Case2於El Centro震波,PGA 200gal (加入垂直向分析) 130
圖C-3 Case1於Hachinohe震波,PGA 150gal (加入垂直向分析) 131
圖C-4 Case2於Hachinohe震波,PGA 150gal (加入垂直向分析) 132
圖C-5 Case1於Imperial Valley震波,PGA 150gal (加入垂直向分析) 133
圖C-6 Case2於Imperial Valley震波,PGA 150gal (加入垂直向分析) 134
圖C-7 Case1於Imperial Valley震波,PGA 250gal (加入垂直向分析) 135
圖C-8 Case2於Imperial Valley震波,PGA 250gal (加入垂直向分析) 136
圖C-9 Case1於JMA Kobe震波,PGA 100gal (加入垂直向分析) 137
圖C-10 Case2於JMA Kobe震波,PGA 100gal (加入垂直向分析) 138
圖C-11 Case1於JMA Kobe震波,PGA 200gal (加入垂直向分析) 139
圖C-12 Case2於JMA Kobe震波,PGA 200gal (加入垂直向分析) 140
圖C-13 Case1於Sylmar震波,PGA 150gal (加入垂直向分析) 141
圖C-14 Case2於Sylmar震波,PGA 150gal (加入垂直向分析) 142
圖C-15 Case1於Sylmar震波,PGA 300gal (加入垂直向分析) 143
圖C-16 Case2於Sylmar震波,PGA 350gal (加入垂直向分析) 144
圖C-17 Case1於TCU068震波,PGA 150gal (加入垂直向分析) 145
圖C-18 Case2於TCU068震波,PGA 150gal (加入垂直向分析) 146
圖C-19 Case1於Northridge震波,PGA 150gal (加入垂直向分析) 147
圖C-20 Case2於Northridge震波,PGA 150gal (加入垂直向分析) 148
圖C-21 Case1於Northridge震波,PGA 250gal (加入垂直向分析) 149
圖C-22 Case2於Northridge震波,PGA 250gal (加入垂直向分析) 150
參考文獻 參考文獻
1. Asher, J. W., S. N. Hoskere, R. D. Ewing, D. R. Van Volkinburg, R. L. Mayes and M. Button (1995) “Seismic performance of the base isolated USC University Hospital in the 1994 Northridge earthquake.” ASME, Pressure Vessels and Piping Division (Publication) PVP, Seismic, Shock, and Vibration Isolation, 139: 147-154.
2. Bozorgnia, Y., S. A. Mahin and A. G. Brady (1998) “Vertical response of twelve structures recorded during the Northridge earthquake,” Earthquake Spectra, 14(3), August, 411-432.
3. Celebi, M. (1996) “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” Structural Design of Tall Buildings, 5(2):95-109.
4. Fujita, T. (1998) “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1( 3), 295-300.
5. Kelly, J. M. (1998) “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285.
6. Martelli, A. and M. Forni (1998) “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294.
7. Basöz, N. I. and Kiremidjian, A. S. (1998). “Evaluation of bridge damage data from the Loma Prieta and Northridge, CA earthquakes.” Technical Report MCEER-98-0004, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1-35
8. Basöz N. I. and et al. (1999). “Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA Earthquake.” Earthquake Spectra, 15(1), 25-54.
9. Bruneau, M., Wilson, J. C. , and Tremblay, R. (1996). “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713.
10. Otsuka, H. and et al. (1997). “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33.
11. Kawashima, K. (2002). “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197.
12. Kosa, K. and et al. (2001). “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154.
13. Lee, G. C. and Loh, C. (1999). “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
14. Ghobarah, A. and Ali, H. M. (1988). “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166.
15. K. Kawashima, “SEISMIC ISOLATION OF BRIDGES IN JAPAN”, Department of Civil Engineering, Tokyo Institute of Technology.
16. 唐治平,陳全和,「隔震橋梁位移控制」,結構工程,第八卷,第三期,pp.19-32,(1993)。
17. 唐治平,李維森,柯孝勳,「橋梁結構耐震、隔震及減震技術之應用研究」,結構工程,第十七卷,第二期,pp.33-52,(2002)。
18. Vasant A. Matsagar and R.S. Jangid, “Seismic Response of Simply Supported Base-Isolated Bridge with Different Isolators”, International Journal of Applied Science and Engineering, vol. 1, pp.53-69 (2006).
19. 張國鎮,黃震興,蘇晴茂,李森枂,「結構消能減震控制及隔震設計」,全華科技圖書,第七章,pp.7-2~7-32,(2005)
20. Naeim, F. and J. M. Kelly “Design of Seismic Isolated Structures”, Chapter 4, John Wiley & Sons, Inc., New York (1999).
21. Yang, Y. B., L. Y. Lu and J. D. Yau “Chapter 22: Structure and Equipment Isolation” Vibration and Shock Handbook, edited by C. W. de Silva, CRC Press, Taylor & Francis Group (2005).
22. 葉超雄“近斷層建築物設計地震力之研究”,921 集集地震與建築物耐震技術研討會論文集,內政部建研所企劃,台北,1999年12 月。
23. Bozorgnia, Y., S. A. Mahin and A. G. Brady “Vertical response of twelve structures recorded during the Northridge earthquake.” Earthquake Spectra, 14(3), August, 411-432 (1998).
24. Chai, J. F. and C. H. Loh “Near-fault ground motion and its effect on civil structures.” International workshop on mitigation of seismic effects on transportation structures, July 12-14, Taipei, Taiwan, R.O.C. 70-81 (2000).
25. Hall, J. F, T. H. Heaton, M. W. Halling, D. J. Wald “Near-source ground motions and its effects on flexible buildings.” Earthquake Spectra, 11, 569-605 (1995).
26. Loh, C. H. “Interpretation of structural damage in 921 Chi-Chi-earthquake.” Proceedings of International Workshop on Chi-Chi, Taiwan Earthquake of September 21, 1999, Dec. 14-17, pp 5-1 ~ 5-77 (1999).
27. Liao, W. I., C. H. Loh and S. Wan (2000) “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake,” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep 18-20, Taipei, 371-380.
28. Naeim, F. and J. M. Kelly (1999) Design of Seismic Isolated Structures, Chapter 4, John Wiley & Sons, Inc., New York.
29. 盧煉元、施明祥、曾旭玟、吳政彥(2005)“滑動隔震支承之研發與其受近斷層震波行為之實驗探討”,結構工程,第十二卷,第三期29-59頁。
30. Rao, P. Bhasker and R. S. Jangid (2001) “Performance of sliding systems under near-fault motions,” Nuclear Engineering and Design, 203, 2-3,Jan. 2,2001, 259-272.
31. Jangid, R. S. and J. M. Kelly (2001) “Base isolation for near-fault motion,” Earthquake Engineering and Structural Dynamics, 30, 691-707.
32. Lu, L. Y. and W. N. Chang (2000) ”Effect of vertical ground motion on structures with frictional seismic isolators,” The First International Conference on Structural Stability and Dynamics, December 7-9, Taipei, Taiwan.
33. Pranesh, M. and R. Sinha (2000) “VFPI:an isolation device for a seismic deign.” Earthquake Engineering and Structural Dynamics, 29, 603-627.
34. Pranesh, M. and R. Sinha (2002) “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator” Journal of Structural Engineering, 128, 870.
35. Pranesh, M. and R. Sinha (2004) “Behavior of Torsionally Coupled Structures with Variable Frequency Pendulum Isolator” Journal of Structural Engineering, 130, 1041.
36. 盧煉元,施明祥,吳政彥 “變曲率滑動隔震支承之遲滯行為理論與實驗研究”,第七屆結構工程研討會,桃園大溪,8月22-24日,論文編號:H19(2004)。
37. 吳政彥“變曲率滑動隔震結構之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2004),指導教授:盧煉元。
38. 盧煉元,吳政彥,王健“變曲面滑動隔震系統於近斷層隔震之應用研究(一)”,93年度國科會專題研究計畫成果報告書,計畫編號NSC93-2625-Z-327-002(2005)。
39. 王健“變曲率滑動隔震防制近斷層震波之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2006),指導教授:盧煉元。
40. Lu, L. Y., J. Wang, S. W. Yeh (2007) “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation” The 4th International Structural Engineering and Construction Conference (ISEC-4), September 26-28, Melbourne, Australia, pp. 1065-1071.
41. Lu, L. Y., T. Y. Lee, S. W. Yeh (2011) “An experimental study on sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, 40, 1609-1627.
42. 盧煉元、施明祥,中華民國發明專利,專利名稱:變曲率隔震器。專利字號:I273158,專利証書日期:96年2月11日,專利期限:民國96年2月11日至114年5月10日止,公開編號:200639305。
43. 董佩宜 “應用多項式摩擦單擺支承之隔震橋梁研究” ,國立中央大學土木系碩士論文(2010),指導教授:李姿瑩。
44. 方嬿甄 “考量垂直向效應之多項式摩擦單擺支承之分析與設計” ,國立中央大學土木系碩士論文(2010) ,指導教授:莊德興。
45. 葉奕麟“搖擺式隔震支承之理論與實驗研究”,高雄第一科技大學營建工程系碩士論文(2008),指導教授:盧煉元。
46. 盧煉元,李姿瑩,葉奕麟,張洵(2010)“變頻式搖擺支承於近域隔震之運用”,中國土木水利工程學刊,第二十二卷,第三期283-298頁。
47. Kutz, Myer, Mechanical Engineer’s Handbook, John Wiley & Sons, New York, pp.242-244(1998).
48. 莊玟珊 “PSO–SA 混合搜尋法與其他結構最佳化設計之應用”,國立中央大學土木工程學系碩士論文(2007) ,指導教授:莊德興。
49. Deb, K., Gulati, S., and Chakrabarti, S. (1998). “Optimal Truss-Structure Design Using Real-Coded Genetic Algoritms.” Proceedings of the Third Annual Conference, 479−486.
50. Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization.” Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1942-1948.
51. Eberhart, R. C. and Kennedy, J. (1995). “A new optimizer using particle swarm theory.” Proceedings of the Sixth International Symposium on Micro machine and Human Science, Nagoya, Japan, 39-43.
52. Eberhart, R. C. and Shi, Y. H. (2001). “Particle swarm optimization: developments, applications and resources.” Proceedings of IEEE International Conference on Evolutionary Computation, Seoul, Korea, vol. 1, 81-86.
53. Fourie, R. C. and Groenwould, A. A. (2002). “The particle swarm optimization algorithm in size and shape optimization.” Structural and Multidisciplinary Optimization, 23, 259-267.
54. Kirkpatrick, S. ,Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by Simulated Annealing.” Science, 220, No. 4598, 671-680.
55. Corana, A., Maechesi, M.,Martini, C., and Ridella, S. (1987). “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm.” ACM Transactions on Mathematical Software, 13(3), 262-280.
指導教授 李姿瑩 審核日期 2013-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明