博碩士論文 996201005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.147.62.19
姓名 黃翔昱(Hsiang-Yu Huang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究
(The Study of atmospheric radiation and aerosol radiative forcing at LABS)
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用★ 鹿林山與中壢氣膠光學垂直特性之監測與比較
★ 北台灣冬季層狀雲化學特性分析★ 鹿林山空氣品質背景監測站之背景值分析
★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣氣膠的存在能改變太陽輻射收支,為潛在造成氣候變遷原因之一。IPCC(2007)指出人為造成之氣膠直接輻射驅動力(radiative forcing)約 -0.5 W m-2,但具有相當大的不確定性,Liou et al. (2007)建議目前大氣輻射傳送模擬主要問題在於:氣膠之輻射效應、複雜地形輻射效應、海表面複雜之反照。本篇研究目的為探討鹿林山大氣背景站大氣輻射特徵及估算氣膠直接輻射驅動力。吾人嘗試整合鹿林山背景站Kipp&Zonen全天空輻射通量計、AERONET太陽光度計(Cimel’s sunphotometer, CIMELs) 與一維大氣輻射傳送模式(libRadtran),藉由個案分析建立觀測與模擬之間的相關性,並探討儀器與模式之誤差及不確定性,統整分析2010-2011年鹿林山背景站大氣輻射與氣膠光學之特徵,最後以三種不同方法估算氣膠輻射驅動力。
由個案分析結果顯示,模式於晴空狀態下大氣輻射通量模擬具有良好的表現。經由濾雲可得到晴空下地面輻射通量,將此輻射通量減去模式模擬無氣膠時的地面輻射通量,可求得瞬間輻射驅動力,經由三種不同方法估算,結果顯示2010-2011年平均地面短波氣膠直接輻射驅動力(ARF)為:-14.6−-6.5 Wm-2 (Global)、11.0−14.1 Wm-2 (Diffuse)、-23.2−-17.1 Wm-2 (Direct),鹿林山於春季(3-5月)有較高之背景污染物,使地面輻射通量下降,造成氣膠輻射驅動力產生極值。而每單位AOD可造成地面短波輻射的改變(ARFE)為: -237.8−-94.2 Wm-2τ-1 (Global)、167.8−191.8 Wm-2τ-1 (Diffuse)、-350.2−-245.9 Wm-2τ-1 (Direct)。另外亦發現,6至9月期間氣膠具有較大的吸光性,使得相同AOD下,輻射通量減少較多。未來研究除嘗試以更精確之氣膠光學參數(如由in-situ觀測取得)改進模擬結果,此外若以本研究估算之氣膠輻射驅動力作為基礎,則可直接由觀測之地面輻射通量回推氣膠輻射驅動力,並反演AOD,可做為輻射通量計觀測的延伸應用。
摘要(英) Aerosols can alter solar radiation in the earth’s atmosphere and have implications for future climate change. The Intergovernmental Panel on Climate Change (IPCC, 2007) has indicated that anthropogenic direct aerosol radiative forcing (ARF), which is estimated to be -0.5 Wm-2, has a large uncertainty. Liou et al. (2007) suggested the current challenges on the atmospheric radiative transfer model to be aerosol-radiative effect, surface complexity terrain-radiative effect, and wind-driven air-sea interface-radiative effect. We investigated atmospheric radiation and direct aerosol-radiative forcing at Lulin Atmospheric Background Station (LABS), Taiwan. We integrated measurements from the Kipp & Zonen solar instrument systems, the Aerosol Robotic Network (AERONET) Cimel sunphotometer (CIMELs), and a radiative transfer model (libRadtran) to estimate ARF. The good agreement between observation and simulation for clear-sky implies the model can represent solar radiation at the surface for the mountain site. We also discussed model and instrument uncertainties and analyzed data from 2010 to 2011 to clarify the characteristics of atmospheric radiation and aerosol optical properties at LABS. We applied three different methods (i.e., direct calculation, linearly interpolated, and model calculation) to estimate direct aerosol radiative forcing.
The results show that the mean downward shortwave ARFs at the surface are -14.6−-6.5 Wm-2 (Global), 11.0−14.1 Wm-2 (Diffuse), and -23.2−-17.1 Wm-2 (Direct), respectively. We observed the seasonal maximum values of ARFs in spring because of the higher aerosol optical depth (AOD). We estimated the aerosol radiative forcing efficiency (AREF; ARF/AOD) to be -237.8−-94.2, 167.8−191.8, and -350.2−-245.9 Wm-2τ-1 for Global, Diffuse, and Direct, respectively. We attributed the higher AREF values during June and September to aerosol with larger light absorption during this season.
In the future, we will attempt to improve our simulation results by using inputs of aerosol optical properties that are more accurate (e.g., obtained from in-situ). The empirical relationship between ARF and AOD from this study could also be used to estimate AOD, when surface radiation flux measurements are available. The AOD retrieved from the global distribution of radiometer measurements could benefit aerosol and radiation communities.
關鍵字(中) ★ 氣膠光學特性
★ 氣膠輻射驅動力
★ 大氣輻射傳送方程
關鍵字(英) ★ Aerosol Optical Properties
★ Aerosol Radiative Forcing (ARF)
★ Radiative Transfer Equation (RTE)
論文目次 摘要...i
ABSTRACT...iii
目 錄...vi
圖目錄...viii
表目錄...xii
第一章 前 言...1
1-1研究動機...1
1-2研究目的...3
第二章 文獻回顧...5
2-1大氣輻射收支平衡...5
2-2氣膠輻射效應...6
2-3亞洲地區氣膠之研究...8
2-4輻射傳輸模擬相關之研究...10
2-5地表輻射觀測相關之研究...12
2-6氣膠輻射驅動力相關之研究...14
第三章 研究方法...16
3-1實驗地點及選用時間...16
3-2實驗設備與觀測原理...18
3-2-1Kipp & Zonen輻射通量計...18
3-2-2太陽光度計(Cimel’s sunphotometer, CIMELs)...19
3-3氣膠光學特徵參數...21
3-3-1單次散射反照率(Single Scattering Albedo, SSA)...21
3-3-2氣膠光學厚度(Aerosol Optical Depth, AOD)...22
3-3-3Ångström Exponent(AE)...23
3-3-4不對稱因子(Asymmetry Factor, g)...23
3-3-5氣膠輻射驅動力(Aerosol Radiative Forcing, ARF)...24
3-4模式簡介及模擬設計...26
3-4-1離散座標輻射傳送模式(DISORT)...26
3-4-2輻射傳送整合模式(libRadtran)...30
3-4-3模式輸入...31
3-5氣膠輻射驅動力估算方法...32
3-5-1方法一:直接計算...32
3-5-2方法二:線性內差...33
3-5-3方法三:模式計算...36
第四章 結果與討論...37
4-1觀測資料長期分析...37
4-1-1地面輻射通量...37
4-1-2氣膠光學特性...39
4-2觀測與模擬比較...40
4-2-1個案一:低AOD日(2011/02/07)...40
4-2-2個案二:高AOD日(2011/04/14)...42
4-2-3模式輸入與敏感度測試...42
4-2-4儀器與觀測誤差來源分析...44
4-3氣膠直接輻射驅動力...44
4-3-1方法一:直接計算...46
4-3-2方法二:線性內差...47
4-3-3方法三:模式計算...48
4-4全天空、直射與散射之氣膠輻射驅動力...49
4-4-1方法一:直接計算...49
4-4-2方法二:線性內差...50
4-4-3方法三:模式計算...51
4-5各估計方法之比較...52
4-6氣膠輻射驅動力應用...54
第五章 結論與展望...56
5-1結論...56
5-2展望...59
參考文獻...61
參考文獻 [1]王聖翔 (2007), 亞州生質燃燒氣膠對對區域區域環境環境與大氣輻射大氣輻射衝擊及對氣象場的反饋作用, 國立中央大學大氣物理研究博士論文.
[2]吳承翰 (2002), 亞洲沙塵暴之模擬, 國立中央大學大氣物理研究所碩士論文.
[3]林能暉,蔡錫祺,王家麟,李崇德,許桂榮,王聖翔 (2012), 鹿林山背景測站科技研究及操作維護計畫專案工作計書, 行政院環境保護署.
[4]Ackerman, A. S., O. Toon, D. Stevens, A. Heymsfield, V. Ramanathan, and E. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288(5468), 1042-1047.
[5]Ackerman, T. P., and G. M. Stokes (2003), The Atmospheric Radiation Measurement Program, Physics Today, 56(1), 38-44.
[6]Albrecht, B. A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science, 245(4923), 1227-1230.
[7]Anderson, G. P., S. Clough, F. Kneizys, J. Chetwynd, and E. P. Shettle (1986), AFGL atmospheric constituent profiles (0.120 km)Rep., DTIC Document.
[8]Ångström, A. (1964), The parameters of atmospheric turbidity, Tellus, 16(1), 64-75.
[9]Augustine, J. A., J. J. DeLuisi, and C. N. Long (2000), SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research, Bulletin of the American Meteorological Society, 81(10), 2341-2357.
[10]Bush, B. C., F. P. J. Valero, A. S. Simpson, and L. Bignone (2000), Characterization of Thermal Effects in Pyranometers: A Data Correction Algorithm for Improved Measurement of Surface Insolation, Journal of Atmospheric and Oceanic Technology, 17(2), 165-175.
[11]Chandrasekhar, S. (1950), Radiative transfer, 393 pp., John Wiley & Sons, Ltd.
[12]Chen, Y., and K. N. Liou (2006), A Monte Carlo method for 3D thermal infrared radiative transfer, Journal of Quantitative Spectroscopy and Radiative Transfer, 101(1), 166-178.
[13]Chen, Y., A. Hall, and K. N. Liou (2006), Application of three-dimensional solar radiative transfer to mountains, Journal of Geophysical Research: Atmospheres, 111(D21), D21111.
[14]Chou, M.-D., P.-H. Lin, P.-L. Ma, and H.-J. Lin (2006), Effects of aerosols on the surface solar radiation in a tropical urban area, J. Geophys. Res., 111(D15), D15207.
[15]Chylek, P., and J. Wong (1995), Effect of absorbing aerosols on global radiation budget, Geophysical Research Letters, 22(8), 929-931.
[16]Crutzen, P. J., and V. Ramanathan (2003), The parasol effect on climate, Science, 302(5651), 1679-1681.
[17]Dahlback, A., and K. Stamnes (1991), A new spherical model for computing the radiation field available for photolysis and heating at twilight, Planetary and Space Science, 39(5), 671-683.
[18]Dubovik, O., et al. (2006), Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, Journal of Geophysical Research: Atmospheres, 111(D11), D11208.
[19]Dutton, E. G., D. W. Nelson, R. S. Stone, D. Longenecker, G. Carbaugh, J. M. Harris, and J. Wendell (2006), Decadal variations in surface solar irradiance as observed in a globally remote network, Journal of Geophysical Research: Atmospheres, 111(D19), D19101.
[20]Eck, T. F., et al. (2005), Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, Journal of Geophysical Research: Atmospheres, 110(D6), D06202.
[21]Fu, Q., and K. Liou (1992), On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, Journal of the Atmospheric Sciences, 49(22), 2139-2156.
[22]Gautam, R., et al. (2011), Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season, Atmos. Chem. Phys., 11(24), 12841-12863.
[23]Gilgen, H., M. Wild, and A. Ohmura (1998), Means and Trends of Shortwave Irradiance at the Surface Estimated from Global Energy Balance Archive Data, Journal of Climate, 11(8), 2042-2061.
[24]Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, Journal of Geophysical Research: Atmospheres, 102(D6), 6831-6864.
[25]Hansen, J., T. Bond, B. Cairns, H. Gaeggler, B. Liepert, T. Novakov, and B. Schichtel (2004), Carbonaceous aerosols in the industrial era, Eos, Transactions American Geophysical Union, 85(25), 241-244.
[26]Haywood, J., and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Reviews of Geophysics, 38(4), 513-543.
[27]Holben, B. N., T. F. Eck, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, and O. Dubovik (2006), AERONET’s version 2.0 quality assurance criteria, paper presented at Asia-Pacific Remote Sensing Symposium, International Society for Optics and Photonics.
[28]Holben, B. N., et al. (1998), AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sensing of Environment, 66(1), 1-16.
[29]Hyslop, N. P. (2009), Impaired visibility: the air pollution people see, Atmospheric Environment, 43(1), 182-195.
[30]IPCC (2001), Climate Change 2001, The Scientific Basis, Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
[31]IPCC (2007), Climate Change 2007, The Physical Science Basis, Summary for Policymakers, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. Alley et al.
[32]Jacobson, M. Z. (2000), A physically‐based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, Geophysical Research Letters, 27(2), 217-220.
[33]Jayaraman, A., D. Lubin, S. Ramachandran, V. Ramanathan, E. Woodbridge, W. D. Collins, and K. S. Zalpuri (1998), Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise, Journal of Geophysical Research: Atmospheres, 103(D12), 13827-13836.
[34]Ji, Q. (2007), A Method to Correct the Thermal Dome Effect of Pyranometers in Selected Historical Solar Irradiance Measurements, Journal of Atmospheric and Oceanic Technology, 24(3), 529-536.
[35]Ji, Q., and S.-C. Tsay (2000), On the dome effect of Eppley pyrgeometers and pyranometers, Geophys. Res. Lett., 27(7), 971-974.
[36]Ji, Q., and S.-C. Tsay (2010), A novel nonintrusive method to resolve the thermal dome effect of pyranometers: Instrumentation and observational basis, J. Geophys. Res., 115, D00K21.
[37]Ji, Q., S. C. Tsay, K. M. Lau, R. A. Hansell, J. J. Butler, and J. W. Cooper (2011), A novel nonintrusive method to resolve the thermal dome effect of pyranometers: Radiometric calibration and implications, J. Geophys. Res., 116(D24), D24105.
[38]Kato, S., T. P. Ackerman, J. H. Mather, and E. E. Clothiaux (1999), The k-distribution method and correlated-k approximation for a shortwave radiative transfer model, Journal of Quantitative Spectroscopy and Radiative Transfer, 62(1), 109-121.
[39]Kiehl, J. T., and K. E. Trenberth (1997), Earth’s Annual Global Mean Energy Budget, Bulletin of the American Meteorological Society, 78(2), 197-208.
[40]Koren, I., Y. J. Kaufman, L. A. Remer, and J. V. Martins (2004), Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science, 303(5662), 1342-1345.
[41]Kratz, D. P. (1995), The correlated k-distribution technique as applied to the AVHRR channels, Journal of Quantitative Spectroscopy and Radiative Transfer, 53(5), 501-517.
[42]Kylling, A., K. Stamnes, and S.-C. Tsay (1995), A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media, Journal of Atmospheric Chemistry, 21(2), 115-150.
[43]Lee, W.-L., and K. N. Liou (2007), A Coupled Atmosphere–Ocean Radiative Transfer System Using the Analytic Four-Stream Approximation, Journal of the Atmospheric Sciences, 64(10), 3681-3694.
[44]Lee, W.-L., K. N. Liou, and A. Hall (2011), Parameterization of solar fluxes over mountain surfaces for application to climate models, Journal of Geophysical Research: Atmospheres, 116(D1), D01101.
[45]Li, Z., K.-H. Lee, Y. Wang, J. Xin, and W.-M. Hao (2010), First observation-based estimates of cloud-free aerosol radiative forcing across China, J. Geophys. Res., 115, D00K18.
[46]Liao, H., and J. H. Seinfeld (1998), Effect of clouds on direct aerosol radiative forcing of climate, Journal of Geophysical Research: Atmospheres, 103(D4), 3781-3788.
[47]Liou, K. N. (2002), An Introduction to Atmospheric Radiation Second Edition.
[48]Liou, K. N., W.-L. Lee, and A. Hall (2007a), Radiative transfer in mountains: Application to the Tibetan Plateau, Geophysical Research Letters, 342(23).
[49]Liou, K. N., Y. Gu, W. L. Lee, Y. Chen, and P. Yang (2007b), Some Unsolved Problems in Atmospheric Radiative Transfer: Implication for Climate Research in the Asia–Pacific Region, "Recent Progress in Atmospheric Sciences: Applications to the Asia-Pacific region", Chapter 5.
[50]Liu, J., Y. Zheng, Z. Li, C. Flynn, and M. Cribb (2012), Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China, J. Geophys. Res., 117, D00K38.
[51]Lohmann, U., and J. Feichter (2005), Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715-737.
[52]Mayer, B. (2009), Radiative transfer in the cloudy atmosphere, European Physical Journal Conferences, 1, 75-99.
[53]Mayer, B., and A. Kylling (2005), Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5(7), 1855-1877.
[54]Mayer, B., A. Kylling, C. Emde, U. Hamann, and R. Buras (2012), libRadtran user’s guide.
[55]Mobley, C. D. (1994), Light and Water: Radiative Transfer in Natural Waters. Academic, 592 pp., San Diego.
[56]Ogunjobi, K. O., Z. He, K. W. Kim, and Y. J. Kim (2004), Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea, Atmospheric Environment, 38(9), 1313-1323.
[57]Ohlmann, J. C., D. A. Siegel, and C. Gautier (1996), Ocean Mixed Layer Radiant Heating and Solar Penetration: A Global Analysis, Journal of Climate, 9(10), 2265-2280.
[58]Ohmura, A., et al. (1998), Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research, Bulletin of the American Meteorological Society, 79(10), 2115-2136.
[59]Perez, C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbosch, and V. E. Cachorro (2006), A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling, Journal of Geophysical Research: Atmospheres, 111(D15), D15214.
[60]Philipona, R., B. Dürr, C. Marty, A. Ohmura, and M. Wild (2004), Radiative forcing - measured at Earth’s surface - corroborate the increasing greenhouse effect, Geophysical Research Letters, 31(3), L03202.
[61]Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld (2001), Aerosols, climate, and the hydrological cycle., Science, 294, 2119-2124
[62]Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustine, J. Haywood, G. Myhre, T. Nakajima, G. Shi, and S. Solomon (2001), Radiative forcing of climate, Climate change, 349-416.
[63]Ricchiazzi, P., S. Yang, C. Gautier, and D. and Sowle (1998), SBDART: A research and Teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere, Bulletin of the American Meteorological Society, 2101-2114.
[64]Saxena, V. K., S. Yu, and J. Anderson (1997), Impact of stratospheric volcanic aerosols on climate: Evidence for aerosol shortwave and longwave forcing in the Southeastern U.S, Atmospheric Environment, 31(24), 4211-4221.
[65]Schwartz, J., and L. M. Neas (2000), Fine Particles Are More Strongly Associated Than Coarse Particles with Acute Respiratory Health Effects in Schoolchildren, Epidemiology, 11(1), 6-10.
[66]Shettle, E. P. (1990), Models of aerosols, clouds, and precipitation for atmospheric propagation studies, paper presented at In AGARD, Atmospheric Propagation in the UV, Visible, IR, and MM-Wave Region and Related Systems Aspects 14 p (SEE N90-21907 15-32).
[67]Sheu, G.-R., N.-H. Lin, J.-L. Wang, and C.-T. Lee (2009), Lulin Atmospheric Background Station: A New High-Elevation Baseline Station in Taiwan, Earozoru Kenkyu, 24(2), 84-89.
[68]Siegel, D. A., J. C. Ohlmann, L. Washburn, R. R. Bidigare, C. T. Nosse, E. Fields, and Y. Zhou (1995), Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool, Journal of Geophysical Research: Oceans, 100(C3), 4885-4891.
[69]Sokolik, I. N., D. M. Winker, G. Bergametti, D. A. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. E. Penner (2001), Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust, Journal of Geophysical Research: Atmospheres, 106(D16), 18015-18027.
[70]Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27(12), 2502-2509.
[71]Stamnes, K., S.-C. Tsay, W. Wiscombe, and I. Laszlo (2000), DISORT Report.
[72]Trenberth, K. E., J. T. Fasullo, and J. Kiehl (2009), Earth’s Global Energy Budget, Bulletin of the American Meteorological Society, 90(3), 311-323.
[73]Trentmann, J., M. O. Andreae, H. F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann (2002), Simulation of a biomass-burning plume: Comparison of model results with observations, Journal of Geophysical Research: Atmospheres, 107(D2), AAC 5-1-AAC 5-15.
[74]Twomey, S. (1974), Pollution and the planetary albedo, Atmospheric Environment (1967), 8(12), 1251-1256.
[75]Wang, S.-H., N.-H. Lin, M.-D. Chou, S.-C. Tsay, E. J. Welton, N. C. Hsu, D. M. Giles, G.-R. Liu, and B. N. Holben (2010), Profiling transboundary aerosols over Taiwan and assessing their radiative effects, J. Geophys. Res., 115, D00K31.
[76]Wild, M. (2009), Global dimming and brightening: A review, J. Geophys. Res., 114, D00D16.
[77]Wild, M. (2012), New Directions: A facelift for the picture of the global energy balance, Atmospheric Environment, 55(0), 366-367.
[78]Wu, J., W. Jiang, C. Fu, B. Su, H. Liu, and J. Tang (2004), Simulation of the radiative effect of black carbon aerosols and the regional climate responses over China, Advances in Atmospheric Sciences, 21(4), 637-649.
指導教授 林能暉、王聖翔
(Neng-Huei Lin、Sheng-Hsiang Wang)
審核日期 2013-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明