博碩士論文 100621028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:52.14.88.137
姓名 蕭靖謀(Ching-Mou Hsiao)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 應用衛星資料估算之海上降水型態分析雙眼牆颱風的結構與強度變化
相關論文
★ 應用SSM/I衛星資料於西太平洋颱風特性之分析★ 應用衛星資料於熱帶氣旋之環境場分析
★ 衛星資料反演海氣參數及其在梅雨期海上中尺度對流系統生成發展之應用★ 應用SSM/I衛星資料分析桃芝與納莉颱風之降雨及海氣參數的變化
★ 利用Spot 4衛星的Vegetation資料比較NDVI, ARVI, 及AFRI植被指數與氣溶膠厚度之關係★ 應用衛星資料分析颱風降雨與颱風強度變化之關係
★ 應用SSM/I衛星資料於颱風中心定位及最大風速估算★ 應用衛星資料分析海氣參數與颱風強度變化之關係
★ MODIS在生質燃燒監測之應用研究★ 應用SSM/I衛星觀測資料估算颱風定量降水
★ AMSU衛星資料反演大氣溫濕剖面及其在颱風強度估算上之應用★ 利用HHT之EMD方法分析SSM/I資料估算之客觀指數與颱風強度年際變化關係
★ 模式和SSM/I客觀潛力指數在中尺度對流系統預報上之應用★ SSM/I衛星資料估算之客觀潛力指數與颱風強度變化之關係
★ 應用SSM/I衛星資料分析颱風形成之激發機制★ 衛星資料估算颱風旋轉及強度變化在熱帶氣旋定量降雨預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 發生雙眼牆結構的熱帶氣旋除了本身強度高,雙眼牆成形前後伴隨的特殊風場結構和氣旋強度變化仍時常無法由數值模式補捉。為改善對雙眼牆颱風(颶風)的預報能力,瞭解雙眼牆結構發生的原因和維持機制是必要的,對此學者做了許多數值模式實驗和個案研究,而依實驗結果提出之假說或理論皆需要觀測資料驗證。此外,對觀測資料進行大量、多個案分析(Sitkowski et al. 2011)也可帶給我們對雙眼牆颱風(颶風)的概觀認識。
  觀測資料方面,在大西洋從1977年開始,NOAA便對所有生成之熱帶氣旋進行各項動力與熱力參數的飛機觀測;反觀擁有最高雙眼牆發生率(Hawkins and Helveston, 2004)的西北太平洋,卻因缺乏常態飛機觀測,研究時除了少數具計畫支持的個案擁有完整的觀測資料,其餘必須由衛星觀測資料中反演出需要的動力或熱力參數。然而在衛星資料應用上,因擁有較佳透雲性、可獲得較多氣旋資訊的微波觀測搭載於繞極衛星,使覆蓋到颱風完整結構的觀測資料在時間上不連續。所幸Ushio et al.(2009)應用卡曼濾波器整合微波資料和搭載於同步衛星的紅外線觀測資料共同估算降雨量,提供每小時的全球降雨空間分佈產品(Global Satellite Mapping of Precipitation, GSMaP),使我們對本區域雙眼牆結構發生時颱風強度和結構在時間軸上之連續變化的進一步分析變為可行。
  本研究即應用GSMaP,收集雙眼牆發生期間位於海上的颱風個案,視剖面上的降雨極值位置作為判斷內、外眼牆位置的依據,並進一步從軸對稱觀點決定各時間點的眼牆位置並解析內、外眼牆各別的降水強度定義眼牆置換(Willoughby et al. 1982)起始,記錄期間歷經的時間、降雨結構和強度變化,和西北太平洋過去的雙眼牆颱風研究相比,本研究的各項分析具有時間連續之優勢。分析中將個案依眼牆置換過程的不同情況分類為置換傾向較強的取代型和置換傾向較弱的非取代型,發現取代型(非取代型)眼牆置換平均擁有較大(小)的外眼牆成型半徑和較短(長)的置換時間,與Didlake and Houze (2011)提出之理論呼應;同時將結果與不同區域、不同觀測平台的雙眼牆研究比較,本研究結果具有合理的平均眼牆置換時間和具關連性的眼牆尺寸,說明本研究提出之分析方法具相當參考價值。
摘要(英) Double eyewall(or concentric eyewall) structure, often appears in strong tropical cyclones. As the strong intensity and the dramatic structure changes they have, to study their physical feature and to improve the accuracy of forecast are very important for coastal area.
Observation data is needed in order to verify the hypothesis raised from model experiments which are created to study double eyewall cyclones. In addition, simply analyzing a great amount of observation data (Sitkowski et al. 2011) can also give us understanding of their structure and intensity changes.
Unlike Atlantic, there is no regular flight observations in West north Pacific. Instead, researchers use satellite-retrieved information as database. However, passive microwave observations are temporal discontinuously in tropical cyclone monitoring.
Fortunately, Ushio et al.(2009)applied Kalman filter to combine infrared and passive microwave data to estimate the hourly precipitation rate, named as Global Satellite Mapping of Precipitation(GSMaP). The development of GSMaP provide possibility to analyze West north Pacific’s double eyewall typhoons temporal continuously as Atlantic’s.
In this work, hourly GSMaP imageries were divided into 12 sections, and we identified the locations of inner and outer eyewall at each time from the locations of local maximum precipitation in each section, and resolved the precipitation intensity of each eyewall. As the results, the structure and intensity changes of 21 double eyewall cases were recorded, and classified into 2 types: replacement type and non-replacement type. replacement(non-replacement) cases have much(less) significant replacement feature when outer eyewall contracts, and their outer eyewall forms with larger(smaller) radius and replacement takes less(longer) time to be completed, which supports Didlake and Houze (2011)’s theory. The result is compared with previous papers, which have been analyze double eyewall structures through observation data but from different platforms, and the similar eyewall repalcement time and relative eyewall size were found in this study.
關鍵字(中) ★ 雙眼牆颱風
★ 眼牆置換
★ GSMaP
★ 降雨結構
★ 颱風強度變化
關鍵字(英) ★ Double Eyewall
★ Concentric Eyewall
★ Eyewall Replacement Cycle
★ GSMaP
★ Typhoon Structure
論文目次 摘要………………………………………………………I
Abstract…………………………………………III
致謝………………………………………………………V
目錄………………………………………………………VI
圖目錄…………………………………………………VIII
表目錄…………………………………………………XI
第一章 緒論………………………………1
第二章 資料來源………………………7
2.1 GSMaP-MVK………………………………7
2.2 JTWC最佳路徑…………………………12
2.3西北太平洋雙眼牆颱風資料庫…12
第三章 研究方法………………………14
3.1 颱風中心定位……………………………14
3.2定義眼牆位置………………………………16
3.3分析眼牆降雨強度………………………22
第四章 結果分析…………………………24
4.1 取代型雙眼牆……………………………24
4.2 非取代型雙眼牆…………………………26
4.3 登陸之雙眼牆颱風……………………29
4.4 眼牆置換後強度提升的雙眼牆颱風……31
4.5 統計結果……………………………………………………32
第五章 結論與展望……………………………………36
5.1 總結……………………………………………………………36
5.2 未來展望……………………………………………………38
參考文獻………………………………………………………………41
附圖………………………………………………………………………45
附表………………………………………………………………………71
參考文獻 范振原,2004:應用SSM/I 衛星資料於颱風中心定位及最大風速估算。國立中央大學大氣物理研究所碩士論文。
Aonashi, K., J. Awaka, M. Hirose, T. Kozu, T. Kubota, G. Liu, S. Shige, S. Kida, S. Seto, N. Takahashi, and Y. N. Takayabu, 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119-136
Camp, J. P., and M. T. Montgomery, 2001: Hurricane maximum intensity: Past and present. Mon. Weather Rev.129, 1704 – 1717.
DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543.
Didlake, A. C., R. A. Houze, 2011: Kinematics of the Secondary Eyewall Observed in Hurricane Rita (2005). J. Atmos. Sci. 68, 1620–1636.
Hawkins, H. F. 1983: Hurricane Allen and island obstacles. J. Atmos. Sci.40, 1360 – 1361.
Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Preprints, 26th Conf. on Hurricane and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc. 276–277.
Kuo, H.-C. L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci.61, 2722 – 2734.
─, C.-P. Chang, Y.-T. Yang, H.-J. Jiang, 2009: Western North Pacific Typhoons with Concentric Eyewalls. Mon. Wea. Rev.137, 3758–3770.
Kubota, T., S. Shige, H. Hashizume, K. Aonashi, N. Takahashi, S. Seto, M. Hirose, Y. N. Takayabu, K. Nakagawa, K. Iwanami, T. Ushio, M. Kachi, and K. Okamoto, 2007:Global Precipitation Map using Satelliteborne Microwave Radiometers by the GSMaP Project : Production and Validation, IEEE Trans. Geosci. Remote Sens., 45, No. 7, pp.2259-2275.
Kossin, J. P., and M. Sitkowski, 2012: Predicting Hurricane Intensity and Structure Changes Associated with Eyewall Replacement Cycles.Wea. Forecasting, 27, 484–488.
Molinari J., and S. Skubis, 1985: Evolution of the surface wind field in an intensifying tropical cyclone. J. Atmos. Sci.42, 2856 – 2879.
Molinari J., and D. Vallaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes, J. Atmos. Sci.46, 1093 – 1105.
Montgomery M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes, Q. J. R. Meteorol. Soc.123, 435 – 465.
Nong, S., and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Q. J. R. Meteorol. Soc.129, 3323 –3338.
Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev.139, 3829–3847.
Terwey, W. D., and M. T. Montgomery, 2003: Vortex waves and evolution in sharp vorticity gradient vortices, Colorado State University Bluebook #734, 97 pp.
Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res.113, D12112, doi:10.1029/2007JD008897.
Ushio, T., T. Kubota, S. Shige, K. Okamoto, K. Aonashi, T. Inoue, N. Takahashi, T. Iguchi, M. Kachi, R. Oki, T. Morimoto, and Z. Kawasaki, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137-151.
Willoughby, H. E., J. A. Clos, M. G. Shoreibah, 1982: Concentric Eye Walls, Secondary Wind Maxima, and The Evolution of the Hurricane vortex.J. Atmos. Sci. 39, 395–411.
Willoughby, H. E., H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric. nonhydrostatic numerical model, J. Atmos. Sci.41, 1169 – 1186.
Wimmers, A. J.,and Christopher S. V., 2010: Objectively Determining the Rotational Center of Tropical Cyclones in Passive Microwave Satellite Imagery. J. Appl. Meteor. Climatol., 49, 2013–2034.
Yang, Y., H. Kuo, E. Hendricks, and M. Peng, 2013: Structural and Intensity Changes of Concentric Eyewall Typhoons in the Western North Pacific Basin. Mon. Wea. Rev. doi:10.1175/MWR-D-12-00251.1, in press.
Zhou, X. B., Wang, X. Ge, and T. Li, 2011: Impact of Secondary Eyewall Heating on Tropical Cyclone Intensity Change. J. Atmos. Sci.68, 450–456.
指導教授 劉振榮(Gin-Rong Liu) 審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明