博碩士論文 983202005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:52.14.27.122
姓名 曾文傑(Wen-chieh Tseng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 力法分析應用於HS-DLM混合搜尋法之桁架拓樸輕量化效率的研究
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 以整合力法為分析工具之結構離散輕量化設計效率的探討★ 最佳化設計於結構被動控制之應用
★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究★ 構件考慮剛域之向量式有限元素分析研究
★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究★ 橋梁多支承輸入近斷層強地動極限破壞分析
★ 穩健設計於結構被動控制之應用★ 二維結構與固體動力分析程式之視窗介面的開發
★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應
★ 九二一地震大里奇蹟社區倒塌原因之探討★ 群樁基礎之最低價設計
★ 應用遺傳演算法於群樁基礎低價化設計★ 應用Discrete Lagrangian Method於群樁基礎低價化設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文將力法分析應用於和聲搜尋(Harmony Search, HS)與離散拉格朗日法(Discrete Lagraingian Method, DLM)組成之混合演算法進行桁架拓樸結構輕量化設計,並比較力法與位移法之輕量化設計搜尋效率的快慢。
位移法分析時需求解方程式大小是由系統自由度的數量決定,具有高度通用性與自動化分析條件,被廣泛用於現今最佳化設計,而力法分析所需求解的方程式大小是系統贅餘度的數量決定,因此,當超靜定結構的贅餘度數量小於系統自由度數量時,力法在方程式求解的速度上佔有優勢,此外,力法分析中的力平衡矩陣,在結構拓樸與形狀相同下不會改變,因此不需重複將平衡矩陣拆解成對應贅力桿件的贅力矩陣和基元靜定結構的靜定矩陣。本文利用上述之力法分析上的優勢,結合HS隨機搜尋的能力在全域選定一個固定拓樸結構後,利用DLM健全的局部搜尋能力找出局部最佳解,在HS-DLM反覆的搜尋後,本文中所有算例皆可找出與文獻相同或是更好的解,證明了HS-DLM有不錯的搜尋能力,跟位移法分析結果比較後,也證明了力法分析較位移法有速度上的優勢。
摘要(英) This paper is study the efficiency between force method and displacement method applied to hybrid metaheuristic algorithm, namely HS-DLM,for topology optimization design of truesses wiht continuous and discrete variables.
Most structural optimization algorithms published in the literature were developed based on the displacement method of analysis which is incorporated inside the optimization routine. In the displacement method, the number of equations needed to be solved is the number of degrees of freedom for the system whereas that for the force method is the number of redundant forces.If the number of degrees of freedom is greater than the number of redundant in a structural system, the displacement method requires much more computer time than the force method does. Furthermore, the equilibrium matrix in the force method does not change when the topology and shape of truss is fixed in the redesign process making this method attractive and efficient.Using the HS(Harmony Search) global searching ability to find a fixed topology of truss, and find the constrained local minimum by applying DLM(Discrete Lagraingian Method). Afier a few iteration, the study shows that HS-DLM has great searching ability on the references’s cases and the force method has better efficiency of topology optimization design than displacement method.
關鍵字(中) ★ 矩陣力法
★ 和聲搜尋法
★ 離散拉格朗日法
★ 結構輕量化設計
關鍵字(英) ★ Force method
★ Harmony search
★ Discrete lagraingian method
★ Optimum structural design
論文目次 目錄 I
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.2.1 最佳化分析方法回顧 3
1.2.2 結構最佳化設計 6
1.2.3 結構分析力法與位移法 8
1.3 研究方法與內容 10
第二章 結構分析方法 13
2.1 引言 13
2.2 矩陣位移法 13
2.2.1 建立元素勁度矩陣 14
2.2.2 建立座標轉換矩陣 15
2.2.3 建立元素諧和變位矩陣 17
2.2.4 計算全域座標的元素勁度矩陣 18
2.2.5 將元素勁度矩陣組合成系統勁度矩陣 19
2.2.6 求解出自由度位移 19
2.2.7 計算桿件內力 20
2.3 矩陣力法 20
2.3.1 建立內外力平衡矩陣 21
2.3.2 利用平衡矩陣選取贅力 24
2.3.3 計算力轉換矩陣 26
2.3.4 求解贅力 27
2.3.5 計算桿件內力和節點自由度位移 28
2.4 穩定結構判斷 28
2.4.1 位移法結構穩定判斷 30
2.4.2 力法結構穩定判斷 30
第三章 HS-DLM搜尋法 31
3.1 引言 31
3.2 最佳化問題之數學模式 31
3.3 HS理論回顧 32
3.3.1 HS搜尋流程 33
3.3.2 HS於束制條件處理方法 38
3.4 DLM理論回顧 41
3.4.1 鄰點 41
3.4.2 加權離散拉格郎日函數 43
3.4.3 離散梯度與離散鞍點 43
3.4.4 轉換函數與收斂準則 45
3.4.5 一階搜尋公式 46
3.4.6 DLM演算程序 48
3.5 HS-DLM 混合式演算法 51
3.5.1 引言 51
3.5.2 HS-DLM用於尺寸拓樸最佳化 52
第四章 數值算例 57
4.1 測試流程介紹 57
4.2 HS-DLM之參數研究 58
4.2.1 45桿平面桁架 58
4.2.2 HMCR與PAR 59
4.2.3 HM中解的限制與HMS的大小 68
4.2.4 HS-DLM與HS-RDLM 80
4.2.5 小結 81
4.3 力法與位法分析效率 82
4.6.1 類型(一) 10桿平面桁架(I) 82
4.6.2 類型(一)39桿平面桁架 88
4.6.3 類型(一)45桿平面桁架 93
4.6.4 類型(一)72桿空間桁架 96
4.6.5 類型(二)10桿平面桁架(II) 100
4.6.6 類型(二)10桿平面桁架(III) 102
4.6.7 類型(二)11桿平面桁架 104
4.6.8 類型(二)12桿平面桁架 106
4.6.9 類型(二)15桿平面桁架 109
4.6.10 類型(二)25桿空間桁架 114
4.6.11 類型(二)20桿2×2網格桁架 117
4.6.12 類型(二)42桿3×3網格桁架 120
4.6.13 類型(二)72桿4×4網格桁架 123
4.6.14 類型(二)110桿5×5網格桁架 126
4.6.15 類型(二)215桿10×5網格桁架 129
4.4 小結 132
第五章 結論與建議 133
5.1 結論與建議 133
5.2 未來研究方向 134
參考文獻 135
附錄A 10桿平面桁架(I)細部資料及設計結果 145
A.1 10桿平面桁架(I)細部設計資料(參考圖 4- 35) 145
A.2 10桿平面桁架(I)設計結果 146
附錄B 39桿平面桁架細部資料及設計結果 147
B.1 39桿平面桁架細部設計資料(參考圖 4- 41) 147
B.2 39桿平面桁架設計結果 148
附錄C 45桿平面桁架細部資料及設計結果 149
C.1 45桿平面桁架細部設計資料(參考圖 4- 45) 149
C.2 45桿平面桁架設計結果 150
附錄D 72桿空間桁架細部資料及設計結果 151
D.1 72桿空間桁架細部設計資料(參考圖 4- 47) 151
D.2 72桿空間桁架設計結果 152
附錄E 10桿平面桁架(II)細部資料及設計結果 154
E.1 10桿平面桁架(II)細部設計資料(參考圖 4- 49) 154
E.2 10桿平面桁架(II)設計結果 155
附錄F 10桿平面桁架(III)細部資料及設計結果 156
F.1 10桿平面桁架(III)細部設計資料(參考圖 4- 51) 156
F.2 10桿平面桁架(III)設計結果 158
附錄G 11桿平面桁架細部資料及設計結果 159
G.1 11桿平面桁架細部設計資料(參考圖 4- 52) 159
G.2 11桿平面桁架設計結果 160
附錄H 12桿平面桁架細部資料及設計結果 161
H.1 12桿平面桁架細部設計資料(參考圖 4- 54) 161
H.2 12桿平面桁架設計結果 162
附錄I 15桿平面桁架細部資料及設計結果 163
I.1 15桿平面桁架細部設計資料(參考圖 4- 56) 163
I.2 15桿平面桁架設計結果 164
附錄J 25桿空間桁架細部資料及設計結果 165
J.1 25桿空間桁架細部設計資料(參考圖 4- 62) 165
J.2 25桿空間桁架設計結果 167
附錄K 20桿2×2網格桁架細部資料及設計結果 168
K.1 20桿2×2網格桁架細部設計資料(參考圖 4- 64) 168
K.2 20桿2×2網格桁架設計結果 169
附錄L 42桿3×3網格桁架細部資料及設計結果 170
L.1 42桿3×3網格桁架細部設計資料(參考圖 4- 67) 170
L.2 42桿3×3網格桁架設計結果 171
附錄M 72桿4×4網格桁架細部資料及設計結果 172
M.1 72桿4×4網格桁架細部設計資料(參考圖 4- 70) 172
M.2 72桿4×4網格桁架設計結果 174
附錄N 110桿5×5網格桁架細部資料及設計結果 175
N.1 110桿5×5網格桁架細部設計資料(參考圖 4- 73) 175
N.2 110桿5×5網格桁架設計結果 177
附錄O 215桿10×5網格桁架細部資料及設計結果 178
O.1 215桿10×5網格桁架細部設計資料(參考圖 4- 76) 178
O.2 215桿10×5網格桁架設計結果 180
參考文獻 [1] Arora, J. S.,(1989),“Introduction to Optimum Design,” McGraw-Hill.
[2] Balling,R.J., (1991),“Optimal Steel Frame Design by Simulated Annealing,”Journal of Structural Engineering, Vol. 117, No. 6, pp.1780-1795.
[3] Chai, S., and Sun, H. C., (1996),“A Relative Difference Quotient Algorithm for Discrete Optimization,”Structural Optimization, Vol.12, pp.46-56
[4] Deb, K., and Gulati, S., (2001),“Design of Truss-Structures for Minimum Weight Using Genetic Agorithms,” Finite Element in Analysis and Design, Vol. 37, pp. 447-465.
[5] Denke, P. H., (1959), “A General Digital Computer Analysis of Statically Indeterminate Structures,” western joint computer conference, pp. 72-78.
[6] Dong, Y. F., and Huang, H., (2004), “Truss Topology Optimization by Using Multi-Point Approximation and GA,”Chinese Journal of Computational Mechanics, Vol. 21, pp.746-751
[7] Dorn, W. S., Gomory, R. E., and Greenberg, H, J,. (1964),“Automatic Design of Optimal Structures,” Journal of Mechanic, Vol. 3, pp. 25-52.
[8] Erbatur, F., Hasancebi, O., Tutuncu, I., and Kikic, H., (2000),“Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, pp.209-224.
[9] Galante, M., (1996),“Genetic Algorithms as an Approach to Optimize Real-World Trusses,”International Journal for Numerical Methods in Engineering, Vol. 39, pp. 361-382.
[10] Geem,Z. W.,(2006), “Optimal Cost Design of Water Distribution Networks using Harmony Search,” Engineering Optimization, Vol. 38, pp. 259-280.
[11] Geem, Z. W., Kim, J. H., and Loganathan,G.V., (2001), “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, Vol. 76, pp.60-68.
[12] Geem, Z.W., Lee,K. S., and Y. Park., (2005), “Application of Harmony Search to Vehicle Routing,” American Journal of Applied Sciences, Vol. 2, pp. 1552-1557.
[13] Geman, S., and Geman, D., (1984),“Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 79, pp. 681-689.
[14] Hajela, P., (1990),“Genetic Search - an Approach to the Nonconvex Ptimization Problem,” AIAA Journal, Vol. 28, No. 7, pp.1205-1210.
[15] Hemp, W. S., (1974), “Michell Framework for Uniform Load between Fixed Supports,” Engineering Optimization, Vol. 1, Issue.1, pp.61-69.
[16] Hemp, W. S.,(1976),“Michell Framework for a Force in any Definite Direction at the Mid-point between Two Supports,”Engineering Optimization, Vol. 2, pp.183-187.
[17] Jenkins, W. M., (1997), “On the Application of Natural Algorithms to Structural Design Optimization,” Engineering Structures, Vol. 19, No. 4, pp. 302-308.
[18] Juang, D. S., (2004),“Integrated Configuration and Siscrete Sizing Optimization of Truss Structures Using Discrete Lagrangian Method,”10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 2004-4535.
[19] Juang, D. S., Wu, Y. T., and Chang, W. T., (2003), “Optimum Design of Truss Structures Using Discrete Lagrangian Method,”Journal of the Chinese Institute of Engineers, Vol. 26, pp. 635-646.
[20] Kaneko, L., Lawo, M., and Thierauf, G., (1982), “On Computational Procedures for the Force Method,”International Journal of Numerical Method in Engineering, Vol. 18, pp.1469-1495.
[21] Kaveh, A., (1992),“Recent Developments in the Force Method of Structural Analysis,”Applied Mechanics Review, Vol. 45, pp.401-418.
[22] Kaveh, A., and Kalatjari, V., (2002), “Genetic Algorithm for Discrete-Sizing Optimal Design of Trusses Using the Force Method,”International Journal for Numerical Methods in Engineering, Vol. 55, pp. 55-72.
[23] Kaveh, A., and Kalatjari, V., (2003),“Topology Optimization of Trusses Using Genetic Algorithm Force Method and Graph Theory,”International Journal for Numerical Methods in Engineering, Vol. 58, pp. 771–791.
[24] Kirsch, U.,(1989),“Optimal Topologies of Truss Structures,”Computer Methods in Applied Mechanics and Engineering, Vol. 72, pp. 15-28.
[25] Kirsch, U., Taye, S., (1986),“Optimal Topology of Grillage Structures,”Engineering with Computers, Vol. 1,pp. 229-243.
[26] Lee, K. S., Geem,Z. W. , Lee, S. H., and Bae,K.W.,(2005), “The Harmony Search Heuristic Algorithm for Discrete Structural Optimization,” Engineering Optimization, Vol. 37, No. 7, pp. 663-684.
[27] Luh, G. C., and Lin, C. Y., (2008),“Optimal Design of Truss Structures Using Ant Algorithm,”Structural and Multidisciplinary Optimization, Vol. 36, pp 365-379.
[28] Maxwell, J. C., (1864), “On theCalculation of the Equilibrium and Stiffness of Frames,” Philosophical Magazine, Vol. 27, pp. 294-299.
[29] May, S. A., and Balling, R. J., (1992), “A Filtered Simulated Annealing Strategy for Discrete Optimization of 3D Steel Frameworks,”Structural Optimization, Vol. 4, pp. 142-148.
[30] Michell, A. G., (1904),“The Limits of Economy of Material in Frame Structures,”Philosophical Magazine, Vol. 8, pp.589-597.
[31] Mohr, Otto., (1874),“Bietrag zur Theorie des Fachwerks,” Zietschrift des Architektenund Ingenieur, Vol. 20, pp. 338-342.
[32] Ohsaki, M., (1995),“Genetic Algorithm for Topology Optimization of Trusses,”Computers &Structures, Vol. 57, pp. 219-225.
[33] Ohsaki, M., (2001),“Random Search Method Based on Exact Reanalysis for Topology Optimization of Trusses with Discrete Cross-Sectional Areas,”Computers and Structures, Vol. 79, pp. 673-679.
[34] Prager, W.,(1977),“Optimal Layout of Cantilever Trussed,” Journal of Optimization Theory and Applications, Vol. 23, pp. 111-117.
[35] Prager, W.,(1978),“Optimal Layout of Trusses with Finite Numbers of Joints,” Journal of the Mechanics and Physics of Solids, Vol. 26, pp. 241-250.
[36] Prager, W., and Rozvany, G. I. N., (1977),“Optimal Layout of Grillages,”Journal of Structural Mechanics,Vol. 5, pp.1-18.
[37] Przemieniecki, J., (1968),“Theory ofMatrix Structural Analysis,” McGraw-Hill.
[38] Ringertz, U.,(1985),“On Topology Optimization of Trusses,” Engineering Optimization, Vol.9, pp. 209-218.
[39] Robinson, J., (1965),“Automatic Selection of Redundancies in the Matrix Force Method: the Rank Technique,”Canadian Aero Space Journal, Vol. 11, pp.9-12.
[40] Rozvany, G. I. N., (1979), “Optimal Beam Layouts: Allowance for Cost of Shear,”Computer Methods in Applied Mechanics and Engineering, Vol. 19, pp. 49-58.
[41] Rozvany, G. I. N., (1989), “Structural Design via Optimality Criteria,” Dordrecht: Kluwer Academic Publishers.
[42] Rozvany, G. I. N., and Hill, R. D., (1978),“Computer Algorithm for Deriving Analytically and Plotting Optimal Structural Layout,” Computers and Structures, Vol. 10, pp. 295-300.
[43] Rozvany, G. I. N., and Zhou, M., (1991),“Applications of the COC Algorithm in Layout Optimization,”Engineering Optimization in Design Processes, Vol. 63, pp. 59-70.
[44] Rozvany, G. I. N., and Zhou, M., (1991),“COC Algorithm, Part II. Topological, Geometrical and Generalized Shape Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 89, pp. 309-336.
[45] Schmit, L.A., andFleury,C., (1980),“DiscreteContinuousVariableStructural Synthesis Using Dual Methods,” AIAA Journal, Vol. 18,pp. 1515-1524.
[46] Shang, Y., and Wah, B. W., (1998), “A Discrete Lagraingian- Based Global Search Method for Solving Satisfiability Problems,” Journal of Global Optimization, Vol. 12, pp. 61-99.
[47] Sun, H. C., Chai, S., and Wang, Y. F., (1995),“Discrete Optimum Design of Structures,” Dalian University of Technology.
[48] Tauchert, T. D., (1974),“Energy Principles in Structural Mechanics,” McGraw-Hill.
[49] Timoshenko, S., (1953),“History of Strength of Material,” McGraw-Hill.
[50] Topping, B.H.V., (1983), “Shape Optimization of Skeletal Structures: aReview,” Journal of Structural Engineering, Vol.109, pp. 1933-51.
[51] Topping, B.H.V., Khan, A.I., and De Barros Leite, J. P., (1996),“Topology Design of Truss Structures Using Simulated Annealing,”Structural Engineering Review, Vol. 8, pp. 301-314
[52] Venkayya, V. B., Khot, N. S., and Reddyu, V. S.,(1969),“Optimization of Structures Based on the Study of Energy Distribution,”Of 2nd Conf. on Matrix Methods in Structure Mechanic, pp. 111-153.
[53] Wah, B. W., and Shang, Y., (1998),“A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems,” Journal of Global Optimization, Vol. 12, pp. 61-99.
[54] Wah, B. W., Shang, Y., and Wu, Z., (1999),“Discrete Lagrangian Method for Optimizing the Design of Multiplierless QMF Filter Banks,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE, Vol. 46, pp. 1179-1191.
[55] Wang, D., Zhang, W. H., and Jiang, J. S., (2002),“Truss Shape Optimization with Multiple Displacement Constraints,”Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 3597-3612.
[56] Wu, Z., and Wah, B. W., (1999),“The Theory of Discrete Lagrange Multipliers for Nonlinear Discrete Optimization”Principles and Practice of Constraint Programming, Vol. 1713,pp. 28-42.
[57] 石連栓、孫煥純、馮恩民 (2001),「具有動應力和動位移約束的離散變數結構拓撲優化設計方法」,應用數學和力學,第二十二卷,第七期,第695-700頁。
[58] 吳泳達(2003),「離散拉朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所。
[59] 孫煥純、柴山、王躍方、石連拴 (2002),「離散變數結構優化設計」,大連理工大學出版社。
[60] 徐開評 (2009),「應用和聲演算法探討溫室氣體排放限制下之電力系統容量擴增計畫」碩士論文,私立中原大學土工程研究所。
[61] 張慰慈(2003),「DLM-GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所。
[62] 莊德興(2004),「桁架之形狀與離散斷面的整合輕量化設計」,第七屆結構工程研討會,桃園大溪。
[63] 莊德興、吳郎益(2003),「離散拉格郎日法於群樁基礎低價化設計之應用」,中國土木水利學刊,第十五卷,第二期,第93-104頁。
[64] 許素強 (1993) ,「結構尺寸、幾何、拓撲優化的新方法」博士論文,北京航空航太大學土木工程研究所。
[65] 黃海、夏人偉 (1994) ,「複雜結構優化設計的二級結構優化方法研究」,航空學報第十五卷,第七期,第780-786頁。
[66] 楊偉智(2009),「和聲搜尋法於巨大廢棄物回收網路設計之探討」,碩士論文,私立中原大學土木工程研究所。
[67] 藍志浩(2004),「考慮動態反應束制及關連性離散變數之結構最佳化設計」,碩士論文,國立中央大學土木工程研究所。
[68] 羅冠君 (2008),「基於和聲搜尋法與離散拉格朗日法之混合演算法於結構最佳化設計的研究」,碩士論文,國立中央大學土木工程研究所。
[69] 鐘明劍 (2006),「樁基礎最佳化設計之研究」,博士論文,國立中央大學土木工程研究所。
指導教授 莊德興 審核日期 2013-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明