參考文獻 |
[1] 吳財福, 陳裕愷, 張健軒, “太陽光電能供電與照明系統綜論,” 全華圖書, (2007) 1-2.
[2] A. A. Lacis and J. E. Hansen, “A Parameterization for the Absorption of Solar Radiation in the Earth’s Atmosphere,” J. Astronaut.Sci., 31 (1974) 118-133.
[3] 陳頤承, 黃志仁, 吳建樹, 翁得期, 陳麒麟, “矽薄膜太陽能電池技術,” 電子月刊, 145 (2007) 149-164.
[4] “BIPV Encapsulation Markets Preview” NanoMarkets (2012).
[5] J. J. Huang, Y. K. Su, S. H. Wang, Y. H. Liu, and F. S. Juang, “Efficiency Enhancement of Top Emission Organic Light-Emitting Diodes with Ni/Au Periodic Anode,” Jpn. J. Appl. Phys., 47 (2008) 7359-7362.
[6] H. J. Peng, X. L. Zhu, J. X. Sun, Z. L. Xie, S. Xie, M. Wong, and H. S. Kwok, “Efficient Organic Light-Emitting Diode Using Semitransparent Silver as Anode,” Appl. Phys. Lett., 87 (2005) 3.
[7] A. Gassmann, C. Melzer, and H. von Seggern, “The Li3PO4/Al Bilayer: An Efficient Cathode for Organic Light Emitting Devices, “J. Appl. Phys., 105 (2009) 084513.
[8] C. F. Qiu, H. J. Peng, H. Y. Chen, Z. L. Xie, M. Wong, and H. S. Kwok, “Top-Emitting OLED Using Praseodymium Oxide Coated Platinum as Hole Injectors,” IEEE Trans. Electron Devices, 51 (2004) 1207-1210.
[9] P. A. K. Moorthy and G. K. Shivakumar, “Approximations of Fuchs-Sondheimer Theory for the Case of Total Diffuse-Scattering in Thin-Films,” J. Mater. Sci. Lett., 1 (1982) 453-454.
[10] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode Dependence of The Open-Circuit Voltage of Polymer: Fullerene Bulk Heterojunction Solar Cells,” J. Appl. Phys., 94 (2003) 6849-6854.
[11] H. Cho, C. Yun, J. W. Park, and S. Yoo, “Highly Flexible Organic Light-Emitting Diodes Based on ZnS/Ag/WO3 Multilayer Transparent Electrodes,” Org. Electron., 10 (2009) 1163-1169.
[12] H. J. Cho, K. W. Park, J. K. Ahn, N. J. Seong, S. G. Yoon, W. H. Park, S. M. Yoon, D. J. Park, and J. Y. Lee, “Nanoscale Silver-Based Al-Doped ZnO Multilayer Transparent-Conductive Oxide Films,” J. Electrochem. Soc., 156 (2009) J215-J220.
[13] Jung-A. Lee, Joon-Hyung Lee, Young-Woo Heo, Jeong-Joo Kim, and Hee Young Lee, “Characteristics of Sn and Zn co-substituted In2O3 thin films prepared by RF magnetron sputtering,” Curr. Appl. Phys. 12 (2012) S89eS93.
[14] Jörg Haeberle, Matthias Richter, Zbigniew Galazka, Christoph Janowitz, and Dieter Schmeißer, “Resonant photoemission at the O1s threshold to characterize In 2 O 3 single crystals,” Thin Solid Films xxx (2013) xxx-xxx.
[15] K. Fleischer, E. Arca, and I. V. Shvets, “Improving solar cell efficiency with optically optimised TCO layers,” Sol. Energ. Mat. Sol. C. 101 (2012) 262-269.
[16] “Natively textured surface Al-dopedZnO-TCO layers with gradual oxygen growth for thin film solar cells via magnetron sputtering,” Appl. Surf. Sci. 258 (2012) 4092-4096.
[17] Dieter Bonnet, “CHAPTER IC-2 CdTe Thin-Film PV Modules,” Practical Handbook of Photovoltaics (2012) 283-320.
[18] Y. Sato, J. Kiyohara, A. Hasegawa, T. Hattori, M. Ishida, N. Hamada, N. Oka, and Y. Shigesato, “Study on Inverse Spinel Zinc Stannate, Zn2SnO4, as Transparent Conductive Films Deposited by RF Magnetron Sputtering,” Thin Solid Films, 518 (2009) 1304-1308.
[19] S. Ouendadji, K. Ait-Hamouda, N. Gabouze, N. Saoula, and K. Henda, “Electrochemical behavior of p-Si/TiC in aqueous HF,” Vacuum, 71 (2003) 517-522.
[20] V. Adamovich, A. Shoustikov, and M. E. Thompson, “TiN as an Anode Material for Organic Light-Emitting Diodes,” Adv. Mater., 11 (1999) 727-730.
[21] N. W. Cheung, H. Vonseefeld, M. A. Nicolet, F. Ho, and P. Iles, “Thermal-Stability of Titanium Nitride for Shallow Junction Solar-Cell Contacts,” J. Appl. Phys., 52 (1981) 4297-4299.
[22] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, “Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons,” Nature, 458 (2009) 872-875.
[23] Jorge Cruz Fernandes, Carlos Anjinho, Pedro Miguel Amaral, Lu´ıs Guerra Rosa, José Rodr´ıguez, Diego Mart´ınez, Fernando Almeida Costa Oliveira, Nobumitsu Shohoji, “Characterisation of solar-synthesisedTiCx ( x = 0.50, 0.625, 0.75, 0.85, 0.90 and 1.0) by X-ray diffraction, density and Vickers microhardness,” Mater. Chem. Phys. 77 (2002) 711–718.
[24] Min-Hsin Yeh, Lu-Yin Lin, Chuan-Pei Lee, Chen-Yu Chou, Keng-Wei Tsai, Jiann-T’suenLin,Kuo-ChuanHo,“Highperformance CdS quantum--dot-sensitized solar cells with Ti-based ceramic materials as catalysts on the counter electrode,”J. Power. Source. 237 (2013) 141e148.
[25] W. J. Fan, J. B. Xia, P. A. Agus, S. T. Tan, S. F. Yu, and X. W. Sun, “Band Parameters and Electronic Structures of Wurtzite ZnO and ZnO/MgZnO Quantum Wells,” J. Appl. Phys., 99 (2006) 4.
[26] Ü. Ö. Hadis Morkoç, “Zinc Oxide: Fundamentals, Materials and Device Technology,” Chapter 1, (2009), WILEY-VCH.
[27] F. Decremps, J. Zhang, and R.C. Liebermann, “New Phase Boundary and High-Pressure Thermoelasticity of ZnO,” Europhys. Lett., 51 (2000) 268-274.
[28] A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok, and T. Y. Seong, “Growth and Characterization of Hypothetical Zinc-Blende ZnO Films on GaAs(001) Substrates with ZnS Buffer Layers,” Appl. Phys. Lett., 76 (2000) 550-552.
[29] K. I. Hagemark and P. E. Toren, “Determination of Excess Zn in ZnO-Phase Boundary Zn-Zn1+XO,” J. Electrochem. Soc., 122 (1975) 992-994.
[30] K. Lott, S. Shinkarenko, T. Kirsanova, L. Tum, E. Gorohova, A. Grebennik, and A. Vishnjakov, “Zinc Nonstoichiometry in ZnO,” Solid State Ion., 173 (2004) 29-33.
[31] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays,” Nano Lett., 9 (2009) 1223-1227.
[32] J. C. Sun, H. W. Liang, J. Z. Zhao, J. M. Bian, Q. J. Feng, L. Z. Hu, H. Q. Zhang, X. P. Liang, Y. M. Luo, and G. T. Du, “Ultraviolet Electroluminescence from N-ZnO : Ga/P-ZnO : N Homojunction Device on Sapphire Substrate with p-Type ZnO : N Layer Formed by Annealing in N2O Plasma Ambient,” Chem. Phys. Lett., 460 (2008) 548-551.
[33] O. Isabella, F. Moll, J. Krc, and M. Zeman, “Modulated Surface Textures Using Zinc-Oxide Films for Solar Cells Applications,” Phys. Status Solidi A-Appl. Mat., 207 (2010) 642-646.
[34] M. Berginski, J. Hupkes, M. Schulte, G. Schope, H. Stiebig, B. Rech, and M. Wuttig, “The Effect of front ZnO : Al Surface Texture and Optical Transparency on Efficient Light Trapping in Silicon Thin-Film Solar Cells,” J. Appl. Phys., 101 (2007) 11.
[35] R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light Trapping in Thin-Film Silicon Solar Cells with Submicron Surface Texture,” Opt. Express, 17 (2009) 23058-23065.
[36] S. U. Lee, W. S. Choi, and B. Hong, “Synthesis and Characterization of SnO2:Sb Film by dc Magnetron Sputtering Method for Applications to Transparent Electrodes,” Phys. Scr. T 129 (2007) 312-315.
[37] J. Lee, “Effects of Oxygen Concentration on the Properties of Sputtered SnO2:Sb Films Deposited at Low Temperature,” Thin Solid Films 516 (2008) 1386-1390.
[38] J. Ma, X. Hao, S. Huang, J. Huang, Y. Yang, and H. Ma, “Comparison of the Electrical and Optical Properties for SnO2:Sb Films Deposited on Polyimide and Glass Substrates,” Appl. Surf. Sci. 214 (2003) 208-213.
[39] Y. K. Moon, S. H. Kim, and J. W. Park, “The Influence of Substrate Temperature on the Properties of Aluminum-Doped Zinc Oxide Thin Films Deposited by DC Magnetron Sputtering,” J. Mater. Sci.: Mater. Electron 17 (2006) 973-977.
[40] Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, and B. H. Zhao, “Structural, Electrical, and Optical Properties of Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering,” J. Cryst. Growth 304 (2007) 64-68.
[41] T. K. Tsai, H. C. Chen, J. H. Lee, Y. Y. Huang, and J. S. Fang, ”Highly Conductive Indium Zinc Oxide Prepared by Reactive Magnetron Cosputtering Technique Using Indium and Zinc Metallic Targets,” J. Vac. Sci. Technol. A, 28 (2010) 425-430.
[42] X. Bie, J. G. Lu, L. Gong, L. Lin, B. H. Zhao, and Z. Z. Ye, ”Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering at Low Temperature,” Appl. Surf. Sci., 256 (2009) 289-293.
[43] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991) 56-8.
[44] A. Lecestre, E. Dubois, A. Villaret, T. Skotnicki, P. Coronel, G. Patriarche, C. Maurice, “Confined VLS growth and structural characterization of silicon nanoribbons,” Microelectron. Eng. 87 (2010) 1522-1526.
[45] Zhao Wu, Yunwang Zhang, and Kai Du, “A simple and efficient combined AC–DC Electrodeposition method for fabrication of highly ordered Au nanowires in AAO template,” Appl. Surf. Sci. 265 (2013) 149-156.
[46] J. Elias, I. Utke, S. Yoon, M. Bechelany, A. Weidenkaff, J.Michler, and L. Philippe, “Electrochemical growth of ZnO nanowires on atomic layer deposition coated polystyrene sphere templates,” Electrochimica. Acta. xxx (2013) xxx-xxx.
[47] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, and I. C. Chen, “Well-Aligned, Vertically Al-Doped ZnO Nanowires Synthesized on ZnO:Ga/Glass Templates,” J. Electrochem. Soc. 152 (2005) 378-381.
[48] Ye Sun, Katherine E Addison and Michael N R Ashfold, “Growth of arrays of Al-doped ZnO nanocones by pulsed laser deposition, “Nanotechnology. 18 (2007) 495601 (4pp).
[49] S. Lin, H. Tang, Z. Ye, H. He, Y. Zeng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Let. 62 (2008) 603-6.
[50] R. Könenkamp, K. Boedecker, M. C. Lux-Steiner, and M. Poschenrieder, “Thin film semiconductor deposition on free-standing ZnO columns,” Appl. Phy. Lett. 77 (2000) 1575-7.
[51] Jijun Qiu, Xiaomin Li, Weizhen He, Se-Jeong Park, Hyung-Kook Kim, Yoon-Hwae Hwang, Jae-Ho Lee, and Yang-Do Kim, “The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method,” Nanotechnology. 20 (2009) 155603.
[52] Jing-Hua Tian, Jie Hu, Si-Si Li, Fan Zhang, Jun Liu, Jian Shi, Xin Li, Zhong-Qun Tian, and Yong Chen, “Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires,” Nanotechnology. 22 (2011) 245601.
[53] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, “Influence of pH, Precursor Concentration,Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method,” Nanomaterials. 10 (2011) 269692.
[54] Zhiqing Zhang and Jin Mu, “Hydrothermal synthesis of ZnO nanobundles controlled by PEO–PPO–PEO block copolymers,” J. Colloid Interf. Sci. 307 (2007) 79-82.
[52] Renee B. Peterson , Clark L. Fields , and Brian A. Gregg, “Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions,” Langmuir. 20 (2004) 5114-5118.
[55] Zhengzhi Zhou and Yulin Deng, “Kinetics Study of ZnO Nanorod Growth in Solution,” J. Phys. Chem. C 113 (2009) 19853-19858.
[56] Robert N. Wenzel, “Resistance of Solid Surfaces to Wetting By Water,” Ind. Eng. Chem. 28(8) (1936) 988-994.
[57] Cassie and S. Baxte, “Wettability of Porus Surface,” Trans. Faraday Soc. 40 (1944) 546-551.
[58] Xiaolin Zong and Ping Wang, “Effect of UV irradiation on the properties of ZnO nanorod arrays prepared by hydrothermal method,” Physica. E. 41 (2009) 757-761.
[59] Ren-De Sun, Akira Nakajima, Akira Fujishima, Toshiya Watanabe, and Kazuhito Hashimoto, “Photoinduced Surface Wettability Conversion of ZnO and TiO 2 Thin Films,” J. Phys. Chem. B 105 (2001) 1984 - 1990.
[60] Rong Wang, Kazuhito Hashimoto Akira Fujishima, “Light-induced amphiphilic surfaces,” Nature. 31 (1997) 431-432.
[61] Wolfgang H. and Hirschwa, “Zinc Oxide: An Outstanding Example of a Binary Compound Semiconductor,” Acc. Chem. Res. 18 (1985) 228-234.
[62] Brome Uriiversity, I’hysics Department, Providence, and Rhode Islgrid, “Optical Properties and Band Structure of SrTiO3 and BaTiO3,” Phys. Rev. Lett., 140 (1965) A651-A655.
[63] X. Q. Meng, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, L. Dong, Z. Y. Xiao, Y. C. Liu, and X. W. Fan, “Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing,” Chem. Phys. Lett. 413 (2005) 450-453.
[64] Sijing Xie, Yan Zhao, and Yijian Jiang, “Laser-induced hydrophobicity on single crystal zinc oxide surface,” Appl. Surf. Sci. 263 (2012) 405-409
[65] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Adv. Mater. 14 (2002) 158-60.
[66] D. R. Vij and N. Singh, “Luminescence and Related of Ⅱ-Ⅳ Semiconductors,” Nova Science Publishers, N. Y. ,1998.
[67] V. Srikant and D. R. Clarke, “Optical Absorption Edge of ZnO Thin Films: The Effect of Substrate,” J. Appl. Phys. 81 (1997) 6357-6364.
[68] X. Chen, W. Guan, G. Fang, and X. Z. Zhao, “Influence of Substrate Temperature and Post-Treatment on the Properties of ZnO:Al Thin Films Prepared by Pulsed Laser Deposition,” Appl. Surf. Sci. 252 (2005) 1561-1567.
[69] S. S. Lin, J. L. Huang, and P. Šajgalik, “The Properties of Heavily Al-Doped ZnO Films before and after Annealing in the Different Atmosphere,” Surf. Coat. Technol. 185 (2004) 254-263.
[70] C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, A. K. Pradhan, “Effects of Substrate Temperature on the Optical and Electrical Properties of Al : ZnO Films, Semicond,” Sci. Technol. 23 (2008) 085019.
[71] D.Y. Song, “Effects of RF Power on Surface-Morphological, Structural and Electrical Properties of Aluminium-Doped Zinc Oxide Films by Magnetron Sputtering, ” Appl. Surf. Sci. 254 (2008) 4171-4178.
[72] J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, B. H. Zhao, “Carrier Concentration Dependence of Band Gap Shift in N-Type ZnO : Al Films, ” J. Appl. Phys. 101 (2007) 083705.
[73] A. Walsh, J. L. F. D. Silva, S. H. Wei, “Symmetry-Induced Transparency in Conductive Metal Oxides for Optoelectronics, ” SPIE Newsroom (2008).
[74] Shih-Wei Chen and Jenn-Ming Wu, “Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method,” Acta Materialia, 59 (2011) 841-847.
[75] S. M. Sze, “Semiconductor Devices,” Wiley (2001).
[76] Jun Zhang, YanruLiu, Zhiyang Wei, and Junyan Zhang, “Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air,” Appl. Surf. Sci., 265 (2013) 363-368. |