博碩士論文 100324057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.117.11.176
姓名 張玲華(CHANG, LING-HUA)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用奈米球微影術在(110)矽單晶基材上製備規則有序鎳矽化物奈米點與矽單晶奈米陣列之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究成功利用聚苯乙烯(Polystyrene, PS) 奈米球微影術(Nanosphere Lithography,NSL)結合熱退火製程在(110)矽晶上製備出大面積、二維週期性排列的鎳金屬奈米點及矽化物奈米點陣列。並探討所製備之鎳金屬點陣列與(110)矽晶基材在不同溫度下熱退火處理時之界面反應。
從穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 及選區電子繞射(Select Area Electron Diffraction, SAED) 分析中,可發現鎳金屬奈米點陣列在(110)Si基材上反應時,在低溫退火300 ℃時就已完全轉換為磊晶二矽化鎳(Epitaxial NiSi_2,Epi-NiSi_2) 。此結果指出鎳金屬奈米點在(110)Si基材進行界面矽化反應時,越小的鎳金屬奈米點越有利於Epi-NiSi_2之磊晶反應成長。此外,在(110)Si上生成Epi-NiSi2奈米點陣之平均大小隨著溫度升高而增大。在較高溫之退火試片中也觀察到Epi-NiSi2奈米點陣在(110)Si上有特定刻面形貌形成,經過HRTEM鑑定比對之後,可知其刻面方向是平行<11 ̅2>和<11 ̅0>方向。
本研究也結合奈米球模板、多重選擇性化學濕式蝕刻技術和電鍍沉積金屬技術,成功製備出規則有序排列之鎳金屬奈米結構和在(110)矽晶基材上製備出規則有序矽單晶奈米環狀結構陣列,由於製備出之金屬或矽晶奈米結構之大小和形狀可以藉由控制不同的奈米球微影術條件來達成,故此製程為有效率且環保之方法來製備新穎奈米結構而不需其他複雜的微影術。
摘要(英) In this study, 2D periodic arrays of nickel metal nanodots with controlled size and spacing were fabricated on single-crystal (110)Si substrates by using the polystyrene nanosphere lithography (NSL) technique. The interfacial reactions of the Ni nanodots on (110)Si substrate after different heat treatments have also been investigated.
From the TEM and SAED analysis, epitaxial 〖NiSi〗_2 nanodots were found to form on (110)Si at an annealing temperature as low as 300 ℃. The results indicated that the growth of epitaxial 〖NiSi〗_2 is more favorable for the samples with smaller Ni nanodot sizes. In addition, the average size of the epitaxial 〖NiSi〗_2 nanodots were measured to increase with the annealing temperature. The epitaxial 〖NiSi〗_2 nanodots formed on (110)Si were found to be heavily faceted and their faceted edges were identified to be parallel to <11 ̅2> and <11 ̅0> directions.
By combining the nanosphere lithography (NSL), selective chemical etching, and electrodeposition techniques, 2D periodic arrays of Ni metal nanostructures and Si nanoring-like nanostructures have also been designed and fabricated in this study. Since the sizes and shapes of the metal and Si nanostructures can be adjusted by tuning the nanosphere lithographical conditions, the combined approach presented here promises to offer an effective and economical patterning method for growth of other order nanostructures without complex lithography.
關鍵字(中) ★ 奈米球微影術
★ 濕式蝕刻
★ 金屬矽化物
關鍵字(英) ★ nanosphere lithography
★ silicide
★ wet ectching
論文目次 摘要 Ⅰ
ABSTRATE Ⅱ
致謝 Ⅲ
第一章 簡介 1
1-1 前言 1
1-2 各式奈米球自組裝技術 2
1-2-1 滴鑄塗佈技術(Drop-casting) 2
1-2-2 旋轉塗佈技術(Spin-coating) 3
1-2-3 液面自組裝轉附技術 3
1-2-4 電泳自組裝技術 4
1-2-5 液面自組裝沉降技術 5
1-3 利用奈米球微影術製備各式奈米結構 5
1-3-1奈米球微影術結合金屬薄膜沈積技術 6
1-3-2薄膜電鍍結合奈米球微影術技術 6
1-4 蝕刻技術 7
1-4-1 濕式蝕刻技術 7
1-4-2 乾式蝕刻技術 8
1-5 金屬矽化物製程 9
1-5-1 金屬矽化物在半導體工業上之應用及其製程 10
1-5-2 鎳金屬矽化物 12
1-6 研究動機 12
第二章 實驗步驟 15
2-1 微奈米球模板之製備 15
2-1-1 基材前處理 15
2-1-2 奈米球膠體溶液配製 16
2-1-3 自組裝奈米球陣列 16
2-2 大面積鎳金屬矽化物奈米點陣列之製備 17
2-2-1 金屬薄膜蒸鍍 17
2-2-2 奈米球舉離 18
2-2-3 退火熱處理 18
2-3 大面積有序矽單晶奈米環陣列結構之製備 19
2-3-1 反應性離子蝕刻控制奈米球模板球徑大小 19
2-3-2 氧化層移除、金屬薄膜沉積與奈米球舉離 19
2-3-3 退火熱處理 19
2-3-4 選擇性化學濕式蝕刻 20
2-4 奈米球微影術結合電鍍製程製備有序鎳金屬奈米結構陣列 20
2-4-1 鍍製雙層不同金屬薄膜結合液面轉附自組裝技術製備奈米球模板 20
2-4-2 電鍍製備有序鎳金屬奈米結構陣列 21
2-5 分析儀器與鑑定 21
2-5-1 反射式光學顯微鏡(OM) 21
2-5-2 掃描式電子顯微鏡(SEM) 22
2-5-3 原子力顯微鏡(AFM) 22
2-5-4 穿透式電子顯微鏡(TEM) 22
2-5-5 影像式接觸角量測儀(Contact Angle) 23
第三章 結果與討論 24
3-1 單層奈米球陣列模板之製備 24
3-1-1液面自組裝轉附技術 24
3-1-2液面自組裝沉降技術 25
3-2 (110)矽單晶基材上製備鎳金屬點陣與鎳矽化物奈米點陣列 26
3-2-1 鎳金屬點陣與鎳矽化物點陣在(110)矽單晶基材上之形貌觀察26
3-2-2 鎳金屬奈米點陣在(110)矽單晶基材之界面反應 28
3-3 大面積矽單晶奈米點陣列製備於(110)矽單晶基材上 31
3-3-1 點狀矽單晶奈米結構陣列之形貌及尺寸控制與觀察 31
3-3-2 環狀矽單晶奈米結構陣列之形貌及尺寸控制與觀察 32
3-3-3 環狀矽單晶奈米結構陣列在(110)和(001)矽單晶基材上之形貌、尺寸與性質比較 34
3-4 電鍍製備大面積有序鎳金屬奈米結構陣列 35
3-4-1 大面積有序鎳金屬奈米結構陣列形貌控制與觀察 36
3-4-2 利用有序鎳金屬奈米結構陣列作奈米球球徑篩選 37
第四章 結論與未來展望 38
4-1 結論 38
4-1 未來展望 39
參考文獻 40
參考文獻 R. P. Feynman, “There’s Plenty of Room at the Bottom,” Engineering and Science (1960).
G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126 (1983) 236-244.
P. K. Hansma and K. Paul, “Scanning tunneling microscopy,” J. Appl. Phys. 61 (1987) R1-R24.
G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” IBM J. Res. Dev. 44 (2000) 279-293.
G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Microscopes,” Phys. Rev. Lett. 56 (1986) 930–933.
E. Meyer, “Atomic force microscopy,” Prog. Surf. Sci. 41 (1992) 3-49.
E. Betzig and J. K. Trautman, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,” Science Vol. 257 no. 5067 (1992) 189-195.
E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near‐field scanning optical microscopy,” Appl. Phys. Lett. 60 (1992) 2484.
J. M. Shaw, J. D. Gelorme, N. C. L. Bianca, W.E. Conley, and S. J. Holmes, “Negative photoresists for optical lithography,” IBM J. Res. Dev. 41 (1997) 81-94.
M. M. Alkaisi, R. J. Blaikie, S. J. Mc Nab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75 (1999) 3560-3562.
F. H. Dill, “Optical lithography,” IEEE T. Electron Dev .on 22 (1975) 440-444.
T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale Selective-Area Epitaxl Growth of Si Using An Ultrathin SiO_2/Si_3 Ni_4 Mask Patterned by An Atomic Force Microscope,” Appl. Phys. Lett. 77 (2000) 3917-3919.
J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller,“Ordered Magnetic Nanostructures: Fabrication and Properties,” J. Magn. Magn. Mater. 256 (2003) 449 -501.
A. J. Haes, C. L. Haynes, R. P. Van Duyne, “Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials,” Mat. Res. Soc. Symp. 636 (2001) D4.8.1-6.
M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea,” Prentice Hall Chapter 4, 2003.
E. Miyauchi, H. Arimoto, H. Kitada, “Ion Species and Energy Control of Finely Focused RBs for Maskless in Situ Microfabrication Processes,” Nucl. Instrum. Methods B39 (1989) 515-520.
J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. V. Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
M. Ratner and D. Ratner, “Nanotechnology : A Gentle Introduction to the Next Big Idea,” Chapter 4, 2003, Prentice Hall.
H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface, ” J. Colloid Interface Sci. 151 (1992 ) 79-94.
K. Nagayama, “Two-dimensional self-assembly of colloids in thin liquid films,” Colloid Surface A. 109 (1996) 363-374.
P. B. Terry, X. M. Lin, T. N. Toan, I. C. Eric, A. W. Thomas, and M. J. Heinrich, “Kinetically driven self-assembly of highly ordered nanoparticle monolayers, ”Nat. Mater. 5 (2006) 265-280.
S. G. Graña, J. P. Juste, R. A. A. Puebla, A. G. Martínez and L. M. L. Marzán, “Self-Assembly of Au@Ag Nanorods Mediated by Gemini Surfactants for Highly Efficient SERS-Active Supercrystals, ” P. Soc. Photo-Opt. Ins. (2013).
C. Jian, D. Peitao, D. Di, W. C. Guang, W. H. Xu, W. J. Feng, and W. X. Zhong, “Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating, ”Appl. Surf. Sci. 280 (2013) 6-15.
C. W. Chih and T. B. Yue, “Investigation Into the Performance of CNT-Interconnects by Spin Coating Technique,” Nanoelectronics Conference (INEC). (2013) 240-241.
J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
V. Ng, Y. V. Lee, B. T. Chen, and A. O. Adeyeye, “Nanostructure Array Fabrication with Temperature-Controlled Self-Assembly Techniques,” Nanotechnology 13 (2002) 554–558.
E. Sirotkin, J. D. Apweiler, and F. Y. Ogrin, “Macroscopic Ordering of Polystyrene Carboxylate-Modified Nanospheres Self-Assembled at the Water-Air Interface,” Langmuir 13 (2010) 10677-10683.
M. Retsch, K. H. Dostert, S. K. Nett, N. Vogel, J. S. Gutmann, and U. Jonas, “Template-Free structureing of Colloidal Hetero-Monolayers by Inkjet Printing and Particle Floating,” Soft Mater. 6 (2010) 2403-2412.
M. Marquez and P. G. Brian, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique,” Langmuir 20 (2004) 10677-10683.
R. W. Dong, L. Z. Cheng, J. Nan, W. C. Xu, Z. Bing, and Z. J. Hu, “Facile Fabrication of Large Area Polystyrene Colloidal Crystal Monolayer via Surfactant-free Langmuir-Blodgett Technique,” Chemical Research in Chinese Universities. 23 (2007) 712-714.
P. J. Young, R. Pernites, N. Estillore, T. Hyakutake, R. Ponnapati, B. D. Tiu, H. Nishideb, and R. C. Advincula,“Capsulation of carbon nanotubes on top of colloidally templated and electropolymerized polythiophene arrays,” Chem. Commun. 47 (2011)8871–8873.
G. Y. Di, T. D. Gyan, D. Y. Chen, and L. B. Bin, “Controlled Fabrication of Hexagonally Close-Packed Langmuir−Blodgett Silica Particulate Monolayers from Binary Surfactant and Solvent Systems,”Langmuir 29 (2013) 2849−2858.
Y. S. Kuan, C. W. Ping, Y. J. Ling, and Z. H. Bo, “General and Simple Route to Micro/Nanostructured Hollow-Sphere Arrays Based on Electrophoresis of Colloids Induced by Laser Ablation in Liquid,” Langmuir 25 (2009) 8287−8291.
X. R. Guo and L. X. Yang, “Electrically Directed On-Chip ReversiblePatterning of Two-Dimensional Tunable Colloidal Structures,” Adv. Funct. Mater. 18 (2008) 802–809.
J. Pokki, O. Ergeneman, K. M. Sivaraman, B. Ozkale, M. A. Zeeshan, T. Luhmann, B. J. Nelson, and S. Panea, “Electroplated porous polypyrrole nanostructures patterned by colloidal lithography for drug-delivery applications,”Nanoscale 4 (2012) 3083-3088.
P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly,” Mater. Sci. Eng. B. 165 (2009) 186-189.
C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. V. Duyne, “Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing,” J. Phys. Chem. B 106 (2002) 1898-1902.
C. L. Haynes and R. P. V. Duyne, “Dichroic Optical Properties of Extended Nanostructures Fabricated Using Angle-Resolved Nanosphere Lithography,” Nano. Lett. Vol. 3, No. 7 (2003) 939-943.
Z. A. Lewicka, W. W. Yu, and V. L. Colvin, “An alternative approach to fabricate metal nanoring structures based on nanosphere lithography,” P. Soc. Photo-Opt. Ins. 810213 (2011).
L. Johnson and D. A. Walsh, “Deposition of silver nanobowl arrays using polystyrene nanospheres both as reagents and as the templating material,” J. Mater. Chem. 21 (2011) 7555.
M. J . Klein, M. Guillaum´ee, B. Wenger, L. A. Dunbar, J. Brugger, H. Heinzelmann, and R. Pugin,“Inexpensive and fast wafer-scale fabrication of nanohole arrays in thin gold films for plasmonics,”Nanotechnology 21 (2010) 205301-205308.
M. Y. Gjie, C. Jian, F. Y. Liang, Z. Z. Yang, and J. Z. Min, “Ordered GeSi nanorings grown on patterned Si (001) substrates,”Nanoscale Res. Lett. 6 (2011) 205.
Z. Wang, J. Liu, H. Dong, Y. Li, P. Zhan, and M. Zhu, “A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology,” Jpn. J. Appl. Phys. 45 (2006) 582-584.
X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-Scale Fabrication of Ordered Nanobowl Arrays,” Nano. Lett. 4 (2004) 2223-2226.
X. D. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithiography,” Nano. Lett. 5 (2005) 1784-1788.
F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas,” Adv. Mater. 16 (2004) 2155-2159.
D. Byrne, A. Schilling, J. F. Scott and J. M. Gregg, “Ordered Arrays of Lead Zirconium Titanate,” Nanotechnology 19 (2008) 165608-1~5.
C. P. Xuan, F. Y. Liang, and Z. Z. Yang, “The fabrication and application of patterned Si(001) substrates with ordered pits via nanosphere lithography,” Nanotechnology 20 (2009) 095303.
W. Cai, G. Duan, Y. Li, Z. Li, B. Cao, and Y. Luo, “Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer,” J. Phys. Chem. B. 110 (2006) 7184-7188.
W. Cai, G. Duan, Y. Luo, Z. Li, and Y. Lei, “Hierarchical Structured Ni Nanoring and Hollow Sphere Arrays by Morphology Inheritance Based on Ordered Through-Pore Template and Electrodeposition,” J. Phys. Chem. B. 110 (2006) 15729-15733.
D. C. Gonzaleza, M. E. Kizirogloua, X. Lia, A. A. Zhukovb, H. Fangohrd, P. A. J. de Grootb, P. N. Barttletc, and C. H. d. Groot, “Long Range Ordering in Self-assembled Ni Arrays on Patterned Si,” Journal of Magnetism and Magnetic Materials 316 (2007) e78–e81.
M. E. Kiziroglou, X. Li, D. C. Gonzalez, and C. H. de Groot, “Orientation and Symmetry Control of Inverse Sphere Magnetic Nanoarrays by Guided Self-assembly ,” J. Appl. Phys. 100 (2006) 113720-1~5.
X. H. Xia, J. P. Tu, J. Zhang, J. Y. Xiang, X. L. Wang, and X. B. Zhao, “Cobalt Oxide Ordered Bowl-Like Array Films Prepared by Electrodeposition through Monolayer Polystyrene Sphere Template and Electrochromic Properties,” Appl. Mater. Interfaces 2 (2010) 186–192.
L. J. Hong, C. Y. Wen, H. M. Hsiung, and L. I. Chi, “Fabrication of tunable pore size of nickel membranes by electrodeposition on colloidal monolayer template,” J. Alloy Compd. 509 (2011) 6528–6531.
O. D. Velev and A. M. Lenhoff, “Colloidal Crystals as Templates for Porous Materials,” Curr. Opin. Colloid Interface Sci. 5 (2000) 56-63.
O. D. Velev, D. M. Kuncicky, B. G. Prevo, and O. D. Velev, “Controlled assembly of SERS Substrates Templated by Colloidal Crystal Films,” J. Mater. Chem. 16 (2006) 1207–1211.
X. S. Zhao, L. Wang, and Q. Yan, “From Planar Defect in Opal to Planar Defect in Inverse Opal,” Langmuir 22 (2006) 3481-3484.
T. Sumida, Y. Wada, T. Kitamura, and S. Yanagida, “Construction of Stacked Opaline Films and Electrochemical Deposition of Ordered Macroporous Nickel,” Langmuir 18 (2006) 3886-3894.
H. Asoh, K. Fujihara, and S. Ono, “Triangle pore arrays fabricated on Si (111) substrate by sphere lithography combined with metal-assisted chemical etching and anisotropic chemical etching,” Nanoscale Res. Lett. 7 (2012) 406.
Z. X. Min, L. Z. Bo, Y. S. Sheng, W. Shan, Z. J. Hu, C. L. Ying , L. A. Ran, W. T. Qiang, L. S. Zhou, and Y. Bai, “Elevated Ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission, ”J. Mater. Chem. 22 (2012) 8903.
B. Wang, S. J. Chua, and J. Teng, “Novel 2D Ordered Arrays of Nanostructures Fabricated Through Silica Masks Formed by Bilayer Colloidal Crystals as Templates,” IEEE (2005).
S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks,” J. AM. CHEM. SOC. 127 (2005) 1636-1637.
D. Wang, G. Zhang, and H. Mohwald, “Nanoembossment of Au Patterns on Microspheres,” Chem. Mater.18 (2006) 3985-3992.
P. Chen, C.W. Kuo, J. Y. Shiu, and Y. H. Cho, “Fabrication of Large-Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks,” Adv. Mater. 15 (2003) 1065-1068.
K. Seeger and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon Nanopillars,” J. Phys. D: Appl. Phys. 32 (1999) 129–132.
C. L. Cheung, R. J. Nikolic, C. E. Reinhardt and T. F. Wang, “Fabrication of Nanopillars by Nanosphere Lithography,” Nanotechnology 17 (2006) 1339–1343.
W. Li, L. Xu, W. M. Zhao, P. Sun, X. F. Huang, and K. J. Chen, “Fabrication of Large-scale Periodic Silicon Nanopillar Arrays for 2D Nanomold Using Modified Nanosphere Lithography ,” Appl. Surf. Sci. 253 (2007) 9035–9038.
H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using Colloidal Lithography to Fabricate and Optimize Sub-wavelength Pyramidal and Honeycomb Structures in Solar Cells,” Opt. Express 15 (2007) 14793-14803.
Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744–748.
L. Wei, Z. Jiang, Z. X. Gao, X. Jun, X. Ling, Z. W. Ming, S. Ping, S. F. Qqi, W. J. Guo, and C. K. Ji, “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography,” Nanotechnology 19 (2008) 135308.
Y. M. Fei, Y. H. Yu, S. X. Wei, L. J. Shuai, L. X. Cheng, K. Lin, H. J. Hui, W. Fei, and J. Z. Hui,“Periodic silicon nanocone arrays with controllable dimensions prepared by two-step etching using nanosphere lithography and NH_4 OH/H_2 O_2 solution,” Solid State Commun. 151 (2011) 127–129.
S. J. Barcelo, S. T. Lam, G. A. Gibson, X. Sheng, and D. Henze, “Nanosphere lithography based technique for fabrication of large area, well ordered metal particle arrays,” Proc. SPIE. (2012) 8323.
S. Thiyagu, B. P. Devi, Z. Pei, C. Y. Hung, and L. J. Chin, “Ultra-low reflectance, high absorption microcrystalline silicon nanostalagmite,” Nanoscale Res. Lett. 7 (2012) 171.
Z. X. Li, L. Xi. Gang, Z. Z. Fu, L. C. He, and D. W. Zhong, “Direct selective extraction of titanium silicide Ti_5 Si_3 from multi-component Ti-bearing compounds in molten salt by an electrochemical process,”Electrochim. Acta. 56 (2011) 8430-8437.
Y. Ohishi, K. Kurosaki, T. Suzuki, H. Muta, S. Yamanaka, N. Uchida, T. Tada, and T. Kanayama,“Synthesis of silicon and molybdenum–silicide nanocrystal composite films having low thermal conductivity,” Thin Solid Films 534 (2013) 238–241.
K. D. Wook, L. D. Uk, K. E. Kyu, L. S. Won, J. S. Min, and C. W. Ju ,“Electrical characterization of flash memory structure with vanadium silicide nano-particles,” J. Alloy Compd. 559 (2013) 1–4.
G. D. Dong, H. Chen, and M. G. Bin, “Densification, Microstructure, and Wear Property of In Situ Titanium Nitride-Reinforced Titanium Silicide Matrix Composites Prepared by a Novel Selective Laser Melting Process,” Metal Mater. Trans. A. 43A (2012) 697.
D. Ishikawa, K. Nakane, T. Nonomura, K. Shirai, and H. Tatsuoka, “Growth of MoSi_2 by Molten Salt Technique Using Mo-Based Compounds,” e-J. Surf. Sci. Nanotech. Vol. 10 (2012) 55-58.
G. C. Patil and S. Qureshi, “A Comparative Study on Analog/RF Performance of Pt-Germanide and Pt-Silicide Schottky Barrier pMOSFETs,” IEEE T. Electron Dev. (2012).
H. J. Yan, Y. K. Liang, A. Kumar, and S. C. Seng, “Impact of Surface Preparation on Ni(Pt) Silicide Oxidation,” Electrochem. Solid ST. 14(1) (2011) H42-H45.
Y. K. Chae, Y. Egashira, Y. Shimogaki, K. Sugawara, and H. Komiyama, “Experimental and numerical analysis of rapid reaction to initiate the radical chain reactions in WSi_x CVD,” Thin Solid Films 320 (1998) 151–158.
K. D. Woong, J. S. Nam, L. K. Joo, K. J. Joo, K. H. Kje, L. W. Seong, P. B. Gook, L. J. Duk, and S. H. Cheol,“Improving the Cell Characteristics Using Low-k Gate Spacer in 1Gb NAND Flash Memory,” Electron Devices Meeting, 2006. IEDM ’06. International.
Z. Sa, L. X. hua, L. Y. Jing, and W. D. Wei, “Rational Synthesis and Structural Characterizations of Complex TiSi_2 Nanostructures,”Chem. Mater. 21 (2009) 1023–1027.
L. Y. Jing, Z. Sa, L. X. Hua, S. S. Han, and W. D. Wei, “TiO_2/TiSi_2 Heterostructures for High-Efficiency Photoelectrochemical H_2 O Splitting,”J. AM. CHEM. SOC. 131 (2009) 2772–2773.
S. Banerjee, S. K. Mohapatra, and M. Misra, “Water Photooxidation by TiSi_2/TiO_2 Nanotubes,”J. Phys. Chem. C 115 (2011) 12643–12649.
Z. Sa, L. X. Hua, and W. D. We, “,Si/TiSi_2 Heteronanostructures as High Capacity Anode Material for Li Ion Batteries,” Nano. Lett. 10 (2010) 860–863.
X. Jin, Y. X. Gang, H. B. Hon, Y. S. Horn, and W. D. Wei, “Site-Selective Deposition of Twinned Platinum Nanoparticles on TiSi_2 Nanonets by Atomic Layer Deposition and Their Oxygen Reduction Activities,” ACS Nano. (2013).
K. Maex, G. Ghosh, L. Delaey, V. Probst, P. Lippens, L. V. d. hove, and R. F. D. Keersmaecker,“Stability of As and B doped Si with respect to overlaying CoSi_2 and TiSi_2thin films,” J. Mater. Res. 4 (1989) 5.
J. Fouet, M. I. Richard, C. Mocuta, C. Guichet, and O. Thomas, “In situ combined synchrotron X-ray diffraction and wafer curvature measurements during formation of thin palladium silicide film on Si(0 0 1) and Si (1 1 1),”Nucl. Instrum. Meth. B 284 (2012) 74–77.
M. Sawada, H. Katsumata, Y. Tomokuni, and S. Uekusa,“Structural and electrical properties of Co-doped β-FeSi_2 thin films prepared by RF magnetron sputtering,” Physics. Procedia. 23 (2012) 9–12.
H. Uslu, I. D¨okme, I. M. Afandiyeva, and S. Altındal, “Illumination effect on I-V, C-V and G/w-V characteristics of Al–TiW–Pd_2 Si/n–Si structures at room temperature,”Surf. Interface Anal. 42 (2010) 807-811.
I. Dökme and S. Altindal, “Comparative Analysis of Temperature-Dependent Electrical and Dielectric Properties of an Al−TiW−Pd_2 Si/n-Si Schottky Device at Two Frequencies,” IEEE T. Electron Dev. 58 (2011) 11.
L. P. Peng and A. L. He, “First Principle Study on the Electric Structure of β-〖FeSi 〗_2 with Native Point Defects,” Mater. Res. Soc. Symp. P. 3 (2013) 13-15.
T. Suemasu, Y. Negishi, K. Takakura, and F. Hasegawa, ”Room Temperature 1.6 µm Electroluminescence from a Si-Based Light Emitting Diode with β-FeSi_2 Active Region,”Jpn. J. Appl. Phys. 39 (2000) L1013-L1015.
G. J. Burek, M. A. Wistey, U. Singisetti, A. Nelson, B. J. Thibeault, S. R. Bank, M. J. W. Rodwell, and A. C. Gossard, “Height-selective etching for regrowth of self-aligned contacts using MBE,”J. Cryst. Growth 311 (2009) 1984–1987.
M. H. Juang, Y. S. Peng, and B. J. Liu, “Formation of microcrystalline-Si thin film transistors by using self-aligned nickel-silicided process,” Thin Solid Films 519 (2011) 3902–3905.
A. Fleurence, G. Agnus, T. Maroutian, B. Bartenlian, and P. Beauvillain,”Au-assisted Co silicide island growth on Si(1 1 1),”Appl. Surf. Sci. 258 (2012) 9675– 9679.
L. Yan, S. Zhitang, L. Bo, C. Houpeng, W. Guanping, Z. Chao, W. Lianhong, W. Lei, and F. Songlin, ”Schottky-barrier Diode Array Fabrication with Self-aligned Ni Silicidation for Low Power Phase-change Memory Application,” Proc. of SPIE. Vol. 8782 (2012) 878213-1.
G. M. Lan, X. X. Hong, G. Yun, J. G. Wen, D. Q. Rong, and S. G. Sheng, ”Self-aligned TiO_2 thin films with remarkable hydrogen sensing functionality,”Sensor Actuat. B-Chem. 171– 172 (2012) 165–171.
M. M. A. Hakim, L. Tan, A. Abuelgasim, K. Mallik, S. Connor, A. Bousquet, C. H. de Groot, W. R. White, S. Hall, and P. Ashburn, ”Self-Aligned Silicidation of Surround Gate Vertical MOSFETs for Low Cost RF Applications,” IEEE T. Electron Dev. 57 (2010) 3318-3326.
K. H. Cherenack, B. Hekmatshoar, J. C. Sturm, and S. Wagner,” Self-Aligned Amorphous Silicon Thin-Film Transistors Fabricated on Clear Plastic at 300 ◦C,” IEEE T. Electron Dev. 57(2010) 2381-2388.
E. Barbarini, S. Guastella, F. Pirri, and P. D. Torino, ”Structural and chemical analysis of self-aligned titanium silicide formed by furnace annealing,” IEEE ASDAM 2010, 8th International Conference on Advanced Semiconductor Devices & Microsystems (2010) 333-336.
T. L. Ting, M. V. Mateus, and E. C. Kan,”Transverse-Field Bandgap Modulation on Graphene Nanoribbon Transistors by Double-Self-Aligned Spacers,” D. R. C . (2012) 113-114.
C. Zhang, F. Yan, B. C. Bayer, R. Blume, and M. H. V. D. Veen, ”Complementary metal-oxide-semiconductor-compatible and self-aligned catalyst formation for carbon nanotube synthesis and interconnect fabrication,” J. Appl. Phys. 111 (2012) 064310.
L. J. Wei, L. E. Ting, W. Terry, and C. T. Sheng, ”Formation of Nickel-Silicide selective emitter by Laser-induced annealing for p-type solar cell,” ECS Meeting (2011).
K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tash, “Composite TiSi_2/N+Poly-Si Low Resistivity Gate Electrode and Interconnect for VLSI Device Technology,” IEEE T. Electron Dev. 29 (1982) 547-553.
Z. L. Jun, D. Yong, X. H. Hui, and P. Zhu, “Experimental investigation and thermodynamic description of the Co–Si system,” CALPHAD. 30 (2006) 470–481.
S. L. Cheng, S. W. Lu, and H. Chen, “Interfacial Reactions of 2-D Periodic Arrays of Ni Metal Dots on (001) Si,” J. Phys. Chem. Solids. 69 (2008) 620–624.
S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks,” J. Am. Chem. Soc. 127 (2005) 1636-1637.
A. Sinitskii, S. Neumeier, J. Nelles, M. Fischler, and U. Simon, “Ordered Arrays of Silicon Pillars with Controlled Height and Aspect Ratio,” Nanotechnology 18 (2007) 305307-1~305307-6.
Z. Z. Wei, G. X. Dong, Z. Z. Bin, P. Y. Hua, H. Cheng, Z. D. Wei, and Wu D. Ping, “Formations and morphological stabilities of ultrathin CoSi_2 films,” Chin. Phys. B 21 (2012) 087304.
G .K. Gui, L. P. Chang, O. Dong, Z. J. Wei, and Z. Cheng, “Effective Approaches to Prevent Ambient Contaminations Impact on the Cobalt Salicide Process,” Junction Technology (IWJT) (2011) 1-3.
C. L. Hsin, S. Y. Yu, and W. W. Wu, “Cobalt silicide nanocables grown on Co films: synthesis and physical properties,” Nanotechnology 21 (2010) 485602.
C. V. Bockstael, K. D. Keyser, J. Demeulemeester, A. Vantomme, R. L. V. Meirhaeghe, C. Detavernier, J. L. J. Sweet, and C. Lavoie, “In situ study of the formation of silicide phases in amorphous Co–Si mixed layers,” Microelectronic Eng. 87 (2010) 282–285.
C. Y. Chia, L. K. Chang, and K. N. Tu, “Nucleation and growth of epitaxial silicide in silicon nanowires,” Mater. Sci. Eng. R 70 (2010) 112–125.
R. K. Rhein, M. D. Novak, C. G. Levi, and T. M. Pollock, “Bimetallic low thermal-expansion panels of Co-base and silicide-coated Nb-base alloys for high-temperature structural applications,” Mater. Sci. Eng. A 528 (2011) 3973–3980.
S. L. Cheng, Y. P. Wei, and C. H. Chung, “Synthesis of Cobalt Metal Nanowire Arrays and the Interfacial Reactions of Cobalt Nanowires on (001)Si, ”Nanoelectronics Conference (2011).
J. K. Tripathi, M. Garbrecht, C. G. S. Vartash, E. Rabani, W. D. Kaplan, and I. Goldfarb, “Coverage-dependent self-organized ordering of Co- and Ti-silicide nanoislands along step-bunch edges of vicinal Si(111),”Phys. Rev. B 83 (2011) 165409.
J. Acker and K. Bohmhammel ,” Optimization of thermodynamic data of the Ni-Si system,” Thermochim. Acta. 337 (1999) 184–193.
A. Lauwers, P. Besser, T. Gutt, A. Satta, M. D. Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt, and K. Maex, “Comparative Study of Ni-Silicide and Co-Silicide for sub 0.25-μm Technologies,” Microelectronic Eng. 50 (2000) 103-116.
F. D. Heurle, C. S. Petrsson, L. Slot, and B. Strizker, “Diffusion in Intermetallic Compounds with the CaF_2 Structure : A Marker Study of the Formation of NiSi_2 Thin Film,” J. Appl. Phys. 53 (1982) 5678-5681.
A. Mondon, M. N. Jawaid, J. Bartsch, M. Glatthaar, and S. W. Glunz, “Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel–copper contacts on silicon solar cells,” Sol. Energ. Mat. Sol. C 117 (2013) 209–213.
K. Ogata, E. Sutter, X. Zhu, and S. Hofmann, “Ni-Silicide growth kinetics in Si and Si/SiO_2 core/shell nanowires,” Nanotechnology 22 (2011) 365305.
L. Knoll, Q. T. Zhao, S. Habicht, C. Urban, B. Ghyselen, and S. Mantl, “Ultrathin Ni Silicides With Low Contact Resistance on Strained and Unstrained Silicon,” IEEE T. Electron Dev. 31 (2010) 350.
L. Y. Chen, C. Yu, X. Di, and Y. Huang, “Growth of Nickel Silicides in Si and Si/SiO_x Core/Shell Nanowires,” Nano. Lett. 10 (2010) 4721–4726.
T. Wei, S. T. Picraux, H. J. Yu, A. M. Gusak, K. N. Tu, and S. A. Dayeh, “Nucleation and Atomic Layer Reaction in Nickel Silicide for Defect Engineered Si Nanochannels,” Nano. Lett. 13 (2013) 2748−2753.
M. Beregovsky, A. Katsman, E. M. Hajaj, and E. Yaish, “Diffusion formation of nickel silicide contacts in SiNWs,”Solid-State Electronics 80 (2013) 110–117.
H.F. Hsu, H.Y. Chan, T. H. Chen, H.Y. Wu, S. L. Cheng, and F. B. Wu, “Epitaxial growth of uniform NiSi_2 layers with atomically flat silicide/Si interface by solid-phase reaction in Ni–P/Si(1 0 0) systems,” Appl. Surf. Sci. 257 (2011) 7422–7426.
B. Imbert, R. Pantel, S. Zoll, M. Gregoire, R. Beneyton, S. D. Medico, and O. Thomas, “Nickel silicide encroachment formation and characterization,” Microelectron Eng. 87 (2010) 245–248.
A. M. Thron, T. J. Pennycook, J. Chan, W. Luo, A. Jain, D. Riley, J. Blatchford, J. Shaw, E. M. Vogel, C. L. Hinkle, and K. V. Benthem,“ Formation of pre-silicide layers below〖 Ni〗_(1-x) Pt_xSi/Si interfaces,”Acta Materialia 61 (2013) 2481–2488.
L. J. Chen, J. W. Mayer, and K. N. Tu, “Formation and Structure of Epitaxial Silicides on Silicon,” Thin Solid Films 93 (1982) 135-141.
B. Y. Tsui, and C. M. Lee, ”Thermal Stability of Nickel Silicide and Shallow Junction Electrical Characteristics with Carbon Ion Implantation,” Jpn. J. Appl. Phys. 49 (2010) 04AD04.
S. J. Whang, M. S. Joo, and B. M. Seo, “Thermally Stable NiSi Gate Electrode with TiN Barrier Metal for High-Density NAND Flash Memory Devices, ” Jpn. J. Appl. Phys. 49 (2010) 04DA17.
J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi_2 on (111) Si Inside 0.1–0.6 mm Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69 (1996) 999-1001.
A. B. D. Cassie and S. Baxter, “Wettability of Porous Surfaces,” Trans. Faraday Soc. 40 (1944) 0546.
S. L. Cheng, S. W. Lu, S. L. Wong, and H. Chen, "Growth of size-tunable periodic Ni silicide nanodot arrays on silicon substrates," Appl. Surf. Sci. 253 (2006) 2071–2077.
S. L. Cheng, C. H. Wang, and H. Chen, "Formation and Characterization of Periodic Arrays of Nickel Silicide Nanodots on Si(111) Substrates," Jpn. J. Appl. Phys. 48 (2009) 06FE06.
指導教授 鄭紹良(S. L. cheng) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明