參考文獻 |
參考文獻
[1] Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Direct growth of copper nanowires on a
substrate for boiling applications,” Micro. Nano. Lett. 6 (2011) 563-566.
[2] L. Zhang and M. Fang, “Nanomaterials in pollution trace detection and environmental
improvement,” Nano Today 5 (2010) 128-142.
[3] L. Simon, L Ann, L. Goran, and W. Lars, “Single-paper flexible Li-ion battery cells
through a paper-making process based on nano-fibrillated cellulose,” J. Mater. Chem. A 1
(2013) 4671-4677.
[4] K. V. Klitzing, G. Dorda, and Pepper, ”New method for high-accuracy determination of
the fine-structure constant base on quantized hall resistance,” Phys. Rev. Lett. 45 (1980)
494-497.
[5] 白春禮,“Nanometer scale science and technology,”凡異出版社
[6] H. Sepehri-Amin, T. Ohkubo, and K. Hono, “The mechanism of coercivity enhancement
by the grain boundary di ff usion process of Nd–Fe–B sintered magnets,” Acta. Mater. 61
(2013) 1982–1990.
[7] B. Ghazaleh, H. Mansor, S. Nayereh, I. Ismayadi, V. Parisa, N. Manizheh, N. Maryam,
and K. Samikannu, “High coercivity sized controlled cobalt-gold core-shell nano-crystals
prepared by reverse microemulsion,” MRB 13 (2013) 1-22.
[8] F. Pavia and W. A. Curtin, “Molecular modeling of cracks at interfaces in nanoceramic
composites,” J. Mech. Phys. Solids 13 (2012) 1-34.
[9] H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, “Nano-crystalline cu-doped
ZnO thin film gas sensor for CO,” Sensor. Actuat. B-Chem. 115 (2006) 247-251.
[10] P. Serbun, F. Jordan, A. Navitski, G. M¨uller, I. Alber, M.E. Toimil-Molares, and C.
Trautmann, “Copper nanocones grown in polymer ion-track membranes as field emitters,”
Appl. Phys. 58 (2012) 10402.
[11] I. Chang, T. Huang, H. Lin, Y. Tzeng, C. Peng, F. Pan, C. Lee, and H.Chiu, “Growth of
pagoda-topped tetragonal copper nanopillar arrays,” Acs. Appl. Mater. Inter. 1 (2009)
1375-1378.
[12] J. Yu and J. Ran, “Facile preparation and enhanced photocatalytic H 2 -production activity
of Cu 2 cluster modified TiO 2 ,” Energy Environ. Sci. 4 (2011) 1364-1371.
[13] S. Xu, Y. F. Guo, and Z. D. Wang, “Deformation mechanism of the single-crystalline
nano-Cu films: Molecular dynamics simulation,” Comp. Mater. Sci. 67 (2013) 140–145.
[14] W. E. Fu, C. C. Chen, K. W. Huang, Y. Q. Chang, T. Y. Lin, C. S. Chang, and J. S.
Chen“Nano-scratch evaluations of copper chemical mechanical polishing,” Thin Solid
Films 529 (2013) 306–311.
41
[15] Y. Lin, Z. Xu, D. Shen, and B. GuO, “Molecular Dynamics study on the equal biaxial
tension of Cu/Ag bilayer films,” Appl. Surf. Sci. 150 (2013) 1-6.
[16] G. E. Moore, “Cramming more components onto integrated circuits,” EDN 38 (1965)
56-59.
[17] D. Tomus, M. Qian,C. A. Bricec, and B. C. Muddlea, “Electron beam processing of
Al–2Sc alloy for enhanced precipitation hardening,” Scripta. Mater. 63 (2010) 151-154.
[18] T. Edura, H. Takahashi, M. Nakata, K. Tsutsui, K. Itaka, H. Koinuma, J.Mizunoa, and Y.
Wadaa, “Electrical characterization of single grain and single grain boundary of
pentacene thin film by nano-scale electrode array,” Thin Solid Films 518 (2010)
2555-2561.
[19] V. Furin, A. Martucci, M. Guglielmi, C. C. Wong, and F. Romanato, “Electrodeposition
of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,”
Condens. Matter. Phys. 6 (1998) 22-30.
[20] W. Chu, H. I. Smith, and M. L. Schattenburg, “Replication of 50-nm-linewidth device
patterns using proximityx‐ray lithography at large gaps,” Appl. Phys. Lett. 59 (1991)
1641.
[21] R. F. Pease, “Semiconductor technology: Imprints offer moore,” Nature 417 (2002)
802-803.
[22] F. Dinelli, C. Menozzi, P. Baschieri, P. Facci, and P. Pingue, “Scanning probe
nanoimprint lithography,” Nanotechnology 21 (2010) 075305 1-6.
[23] A. Pimpin and W. Srituravanich, “Review on micro- and nanolithography techniques and
their applications,” Eng. J. AISC 16 (2012) No 1.
[24] J. Byun, Y. Kim, G. Jeon, and J. K. Kim, “Ultrahigh density array of free-standing
poly(3-hexylthiophene)nanotubes on conducting substrates via solution wetting,”
Macromolecules 44 (2011) 8558-8562.
[25] X. Ren, C. H. Jiang , D. D. Li, and L. He, “Fabrication of ZnO nanotubes with ultrathin
wall by electrodeposition method,” Mater. Lett. 62 (2008) 3114-3116.
[26] F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu, and Z. Xue “An easy way to construct an
ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template
Method,” Ad. Mater. 18 (2006) 2161-2164.
[27] J. H. Tian, J. Hu, F. Zhang, X. Li, J. Shi, J. Liu, Z. Q. Tian, and Y. Chen, “Fabrication of
high density metallic nanowires and nanotubes for cell culture studies,” Microelectron.
Eng. 88 (2011) 1702-1706.
[28] M. T. Wu, I. C. Leu, J. H. Yen, and M. H. Hon, “Preparation of Ni nanodot and nanowire
arrays using porous alumina on silicon as a template without a conductive interlayer,”
Electrochem.. Solid. St. 7 (2004) C61.
[29] X. W. Wang, Z. H. Yuan, and B. C. Fanga, “Template-based synthesis and magnetic
42
properties of Ni nanotube arrays with different diameters,” Mater. Chem. Phys. 125
(2011) 1-4.
[30] A. A. Agrawal, B. J. Nehilla, K. V. Reisig, T. R. Gaborski, D. Z. Fang,C. C. Striemer, P.
M. Fauchet, and J. L. McGrath, “Porous nanocrystalline silicon membranes as highly
permeable and molecularly thin substrates for cell culture,” Biomaterials 31 (2010)
5408-5417.
[31] N. Chiboub, R. Boukherroub, N. Gabouze, S. Moulay, N. Naar, S. Lamouri, and S. Sam,
“Covalent grafting of polyaniline onto aniline-terminated porous silicon,” Opt. Mater. 32
(2010) 748-752.
[32] P. N. Vinod, “Specific contact resistance and metallurgical process of the silver based
paste for making ohmic contact structure on the porous silicon/p-Si surface of the silicon
solar cell,” J. Mater. Sci. Lett. 21 (2010) 730-736.
[33] K. R. Wigginton and P. J. Vikesland, “Gold-coated polycarbonate membrane filter for
pathogen concentration and SERS-based detection,”Analyst 135 (2010) 1320-1326.
[34] N. Baltes and J. Heinze, “Imaging local proton fluxes through a polycarbonateMembrane
by using scanning electrochemical microscopyand functionalized alkanethiols,” Phys.
Chem. Chem. Phys. 10 (2009) 174-179.
[35] Y. S. Li, F. Y. Liang, H. Bux, A. Feldhoff, W. S. Yang, and J. Caro, “Molecular sieve
membrane: Supported metal-organic frameworkwith high hydrogen selectivity,” Angew.
Chem. Int. Edit. 49 (2010) 548-551.
[36] D. Ramíreza, H. Gómeza, and D. Lincotb, “Polystyrene sphere monolayer assisted
electrochemical deposition of ZnO nanorods with controlable surface density,”
Electrochim. Acta. 55 (2010) 2191-2195.
[37] C. P. Chang, C. C. Tseng, J. L. Ou, W. H. Hwu, and M. D. Ger, “Growth mechanism of
gold nanoparticles decoratedon polystyrene spheres via self-regulated reduction,”
Colloid Polym. Sci. 288 (2010) 395-403.
[38] J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar
anti-bonding mode in silver nanoring structures, ” Nanotechnology 20 (2009) 465203
1-6.
[39] S. J. Lee, J. S. Choi, K. S. Park, G. Khang, Y. M. Lee, and H. B. Lee, “Response of
MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different
micropore sizes,” Biomaterials 25 (2004) 4699–4707
[40] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on
focused-ion-beam pre patterned aluminum Surfaces,” Appl. Phys. Lett. 78
(2001)120-122.
[41] C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266
(1994) 1961–6.
43
[42] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step
replication of honeycombstructures of anodic alumina,” Science 268 (1995) 1466-8.
[43] H. Masuda, F. Hasegwa, and S. Ono, “Self-ordering of cell arrangement of anodic porous
alumina formed insulfuric acid solution,” J. Electrochem. Soc. 144 (1997) L127-30.
[44] O. Jessensky, F. Muller, and U. Go¨sele, “Self-organized formation of hexagonal pore
arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173-5.
[45] A. P. Li, F. A. Birner, K. Nielsch, and U. Go¨sele, “Hexagonal pore arrays with a 50-420
nm interporedistance formed by self-organization in anodic alumina,” J. Appl. Phys. 84
(1998) 6023-6.
[46] C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8 (1996)
1739–46.
[47] D. Routkevitch, A. A. Tager., J. Haruyama, D. Almawlawi, M. Moskovits, and J. M. Xu,
“Nonlithographic nano-wirearrays: fabrication, physics, and device applications,” IEEE
T. electron. Dev. 43 (1996) 1646-58.
[48] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, “Highly ordered nanochannel-array
architecture in anodic alumina,” Appl. Phys. Lett. 71 (1997) 2770-2.
[49] J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of
nanomaterials,” J. Mater. Chem. 7 (1997) 1075–87.
[50] F. Li, L. Zhang, and R. M. Metzger “On the growth of highly ordered pores in anodized
aluminum oxide,” Chem. Mater. 10 (1998) 2470-80.
[51] O. Jessensky, F. Muller, and U. Gösele,“Self-organized formation of hexagonal pore
arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173-1175.
[52] F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered pores in anodized
aluminum oxide,” Chem. Mater. 10 (1998) 2470-2480.
[53] H. Masudaand and K. Fukuda, “Ordered metal nanohole Arrays by two-step replication
of honeycombstructure of anodic alumina,” Science 268 (1995) 1466-1468.
[54] A. Belwalkara, E. Grasinga, W. V. Geertruydenb, Z. Huangc, and W. Z. Misioleka,
“Effect of processing parameters on pore structure and thickness of anodic aluminum oxide
(AAO) tubular membranes,” J. Membrane Sci. 319 (2008) 192–198
[55] H. Masudaand and K. Fukuda, “Ordered metal nanohole Arrays by two-step replication
of honeycombstructure of anodic alumina,” Science 268 (1995) 1466-1468.
[56] X. Y. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, “Molecular-beam epitaxial growth of
GaAs and InGaAs/GaAs nanodot arrays using anodic Al 2 O 3 nanohole array template
masks,” Appl. Phys. Lett. 81 (2002) 361-3.
[57] X. Mei, M. Blumin, D. Kim, Z. Wu, and E. Ruda, “Molecular beam epitaxial growth
studies of ordered GaAs nanodot arrays using anodic alumina masks,” J. Crys. Growth
251(2003) 253-7.
44
[58] X. Y. Mei, M. Blumin, M. Sun, D. Kim, Z. H. Wu, and H. E. Ruda, “Highly ordered
GaAs/AlGaAs quantum-dotarrays on GaAs (001) substrates grown by molecular-beam
epitaxy using nanochannel alumina masks,” Appl. Phys. Lett. 82 (2003) 967-9.
[59] N. Kouklin, H. , J. Liang, M. Tzolov, J. M. Xu, and J. B. Heroux, ”Highly periodic,
three-dimensionallyarranged InGaAsN:Sb quantum dot arrays fabricated
nonlithographically for optical device,” J. Phys. D. Appl.Phys. 36 (2003) 2634-8.
[60] K. Liu, J. Nogués, C. Leighton, H. Masuda, K. Nishio, and I. V. Roshchin,
“Fabrication and thermal stability of arrays of Fe nanodots,” Appl. Phys. Lett. 81(2002)
4434-6.
[61] Y. Lei and W. K. Chim, “Highly ordered arrays of metal/semiconductor core–shell
nanoparticles with tunablenanostructures and photoluminescence,” J. Am. Chem.
Soc.127(2005) 1487–92.
[62] Y. Lei, W. K. Chim, H. P. Sun, and G. Wilde, “Highly ordered CdS nanoparticle arrays
on silicon substrates andphotoluminescence properties,” Appl. Phys. Lett. 86 (2005)
103106.
[63] Z. Chen, Y. Lei, H. G. Chew, L. W. Teo, W. K. Choi, and W. K. Chim, “Synthesis of
germanium nanodots on silicon using an anodic alumina membrane mask,” J. Cryst.
Growth 268 (2004) 560-3.
[64] Y. Lei, W. K. Chim, J. Weissmueller, G. Wilde, H. P. Sun, and X. Q. Pan, “Ordered
arrays of highly oriented single-crystal semiconductor nanoparticles on silicon
substrates,” Nanotechnology 16 (2005) 1892-8.
[65] S. M. Park, C. H. Bae, W. Nam, S. C. Park, and J. S. Ha, “Array of luminescent Er-doped
Si nanodots fabricated by pulsed laser deposition,” Appl. Phys. Lett. 86 (2005) 023104.
[66] W. L. Xu, M. J. Zheng, G. Q. Ding, and W. Z. Shen, “Fabrication and optical properties
of highly ordered ZnO nanodot arrays,” Chem. Phys. Lett. 411 (2005) 37-42.
[67] P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, and P. M. Alsing,
“Electric field tuning ofplasmonic response of nanodot array in liquid crystal matrix,”
Nano Lett. 5 (2005) 1978-81.
[68] G. S. Cheng and M. Moskovits, “A highly regular two-dimentional array of Au quantum
dots deposited in aperiodically nanoporous GaAs epitaxial layer,” Adv. Mater. 14 (2002)
1567-70.
[69] J. Liang, H. Luo, R. Beresford, and J. M. Xu, “A growth pathway for highly ordered
quantum dot arrays,” Appl. Phys. Lett. 85 (2004) 5974-6.
[70] J. Y. Liang, H. Chik, A. J. Yin, and J. Xu, “Two-dimensional lateral superlattices of
nanostructures: nonlithographicformation by anodic membrane template,” J. Appl. Phys.
91(2002) 2544-6.
[71] A. J. Bennett and J. M. Xu, “Simulating collective magnetic dynamics in nanodisk
45
arrays,” Appl. Phys. Lett. 82 (2003) 2503-5.
[72] S. G. Cloutier, R. S Guico, and J. M. Xu, “Phonon localization in periodic uniaxially
nanostructured silicon,” Appl. Phys. Lett. 87(2005) 222104.
[73] G. Q. Ding, W. Z. Shen, M. J. Zheng, W. L. Xu, Y. L. He, and Q. X. Guo, “Fabrication of
highly ordered nanocrystallineSi:H nanodots for the application of nanodevice arrays,” J.
Crys. Growth 283 (2005) 339-45.
[74] S. H. Jeong, Y. K. Cha, I. K. Yoo, Y. S. Song, and C. W. Chung, “Synthesis of Si
nanostrutures via self-organized pillarmask,” Chem. Mater. 16 (2004) 1612-4.
[75] I. H. Park, J. W. Lee, and C. W. Chung, “Formation of silicon nanodot arrays by reactive
ion etching using self-assembled tantalum oxide mask.” J. Ind. Eng. Chem. 11 (2005)
590-3.
[76] A. Mozalev, M. Sakairi, I. Saeki, and H. Takahashi, “Nucleation and growth of the
nanostructured anodic oxideson tantalum and niobium under the porous alumina film,”
Electrochim. Acta 48 (2003) 3155–70.
[77] A. Mozalev, A. Surganov, and S. Magaino “Anodic process for forming nanostructured
metal-oxide coatings forlarge-value precise microfilm resistor fabrication,” Electrochim.
Acta 44 (1999) 3891–8.
[78] A. Mozalev, G. Gorokh, M. Sakairi, and H. Takahashi, “The growth and electrical
transport properties of self-organized metal/oxide nanostructures formed by anodizing
Ta–Al thin-film bilayers,” J. Mater. Sci. 40 (2005) 6399–407.
[79] H. Masuda, K. Yasui, and K. Nishio, “Fabrication of ordered arrays of multiple nanodots
using anodic porous alumina as an evaporation mask,” Adv. Mater. 12 (2000) 1031-3.
[80] B. Yan, H. T. M. Pham, M. Yue, Y. Zhuang, and P.M. Sarro, “Fabrication of in-situ
ultra-thin anodic aluminum oxide layers for nanostructuring on silicon substrate”, Appl.
Phys. Lett. 91 (2007) 053117.
[81] J. Y. Son, Y. S. Shin, Y. H. Shin, and H. M. Janga, “Fabrication of ultrathin Nb nanopin
arrays,” Electrochem. Solid St. 14 (3) (2001) D33-D35.
[82] G. Cao and D. Liu, “Template-based synthesis of nanorod, nanowire, and nanotube
arrays,” Adv. Colloid Interfac. 136 (2008) 45–64.
[83] T. Chowdhury, D. P. Casey, and J. F. Rohan, “Additive influence on Cu nanotube
electrodepositionin anodised aluminium oxide templates,” Electrochem. Commun. 11
(2009) 1203–1206.
[84] P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon, “High rate capabilities
Fe 3 O 4 -based Cu nano-architectured electrodes for lithium-ion battery applications,” Nat.
Mater. 5 (2006) 567-573.
[85] F. Caruso, “Nanoengineering of particle surfaces,” Adv. Mater. 13 (2001) 11.
[86] P. M. Ajayan, “Nanotubes from carbon,” Chem. Rev. 99 (1999) 1787.
46
[87] C. J. Brumlik and C. R. Martin, “Template synthesis of metal microtubules,” J.
Am.Chem. Soc. 113 (1991) 113.
[88] B. Liu and H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime
of 50 nm,” JACS 125 (2003) 4430-4431.
[89] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, “Electrochemically induced
sol – gel preparation of single-crystalline TiO 2 Nanowires,” Nano Lett. 2 (2002) 717-720.
[90] M. P. Zach, K. H. Ng, and R. M. Penner, ”Molybdenum nanowires by electrodeposition,”
Science 290 (2000) 2120.
[91] F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu, and Z. Xue, “ An easy way to construct an
ordered array of nickel nanotubes: the triblock‐ copolymer‐ assisted hard‐ template
method” Adv. Mater. 18 (2006) 2161–2164.
[92] C. J. Brumlik, C. R. Martin, and J. Am. “ Template synthesis of metal microtubules,”
Chem. Soc. 113 (1991) 3174.
[93] C. J. Brumlik, V. P. Menon, and C. R. Martin, “Template synthesis of metal microtubule
ensembles utilizing chemical, electrochemical, and vacuum deposition techniques” Mater.
Res. 9 (1994) 1174.
[94] K. B. Jirage, J. C. Hulteen, and C. R. Martin, “Nanotubule-based molecular-filtration
membranes” Science 278 (1997) 655.
[95] Y. F. Shen, L. Lu, Q. H. Lu, Z. H. Jin, and K. Lu, “Tensile properties of copper with
nano-scale twins,” Scripta Mater. 52 (2005) 989-994.
[96] E. Ma, Y. M. Wang, Q. H. Lu, M. L. Sui, L. Lu, and K. Lu, “Strain hardening and large
tensile elongation in ultrahigh-strength nano-twinned copper,” Appl. Phys. Lett. 85 (2004)
4932-4934.
[97] C. Hu, L. Gignac, and R. Rosenberg, “Electromigration of Cu/low dielectric constant
interconnects,” Microelectron. Reliab. 46 (2006) 213-231.
[98] K. C. Chen, W. W. Wu, C. N. Liao
, L. J. Chen, and K. N. Tu, “Observation of atomic
diffusion at twin-modified grain boundaries in copper,” Science 321 (2008) 1066-1069.
[99] T. C. Liu, C. M. Liu, H. Y. Hsiao, J. L. Lu, Y. S. Huang, and C. Chen, “Fabrication and
characterization of (111)-oriented and nanotwinned Cu by dc electrodeposition ,”Cryst.
Growth Des. 12 (2012) 5012-5016.
[100] S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn, and T. Schimmel,
“Nanoscale twinned copper nanowire formation by direct electrodeposition ,” Small 5
(2009) 2265-2270.
[101] X. Zhang, K. N. Tu, Z. Chen, Y. K. Tan, C. C. Wong, S. G. Mhaisalkar , X. M. Li, C. H.
Tung, and C. K. Cheng, “Pulse electroplating of copper film:a study of process and
microstructure ,” J. Nanosci. Nanotechnol. 8 (2008) 2568-2574.
[102] T. Chowdhury, D. P. Casey, and J. F. Rohan, “Additive influence on Cu nanotube
47
electrodepositionin anodised aluminium oxide templates,” Electrochem. Commun. 11
(2009) 1203–1206.
[103] P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and
J. M. Tarascon, “High rate capabilities
Fe 3 O 4 -based Cu nano-architectured electrodes for lithium-ion battery applications,” Nat.
Mater. 5 (2006) 567-573.
[104] F. Caruso, “Nanoengineering of particle surfaces,” Adv. Mater. 13 (2001) 11-22
[105] P. M. Ajayan, “Nanotubes from carbon,” Chem. Rev. 99 (1999) 1787-1799
[106] C. J. Brumlik and C. R. Martin, “Template synthesis of metal microtubules,” J. Am.
Chem. Soc. 113 (1991) 3174-3175
[107] M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes” Adv.
Mater. 15 (2003) 455.
[108] H. Q. Cao, L. D. Wang, Y. Qiu., Q. Z. Wu, G. W., L. Z., and X. W. Liu, “Generation and
growth mechanism of metal (Fe, Co, Ni) nanotube Arrays,” Chem. Phys. Phys. Chem. 7
(2006) 1500-1504.
[109] T. Chowdhury, D. P. Casey, and J. F. Rohan, “Additive influence on Cu nanotube
electrodepositionin anodised aluminium oxide templates,” Electrochem. Commun. 11 (2009)
1203–1206
[110] G. Song, X. She, Z. Fu, and J. Li, “Preparation of good mechanical property
polystyrenenanotubes with array structure in anodic aluminum oxide template using
simple physical techniques,” J. Mater. Res. 19 (2004) 11.
[111 ] G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong, and Y. Qian, “Well-aligned arrays of CuO
nanoplatelets,” J. Phys. Chem. B 110 (2006) 1632-1637.
[112] J. Li, J. W. Mayer, and E. G. Colgan, “Oxidation and protection in copper and copper
alloy thin films,” J. Appl. Phys. 70 (1991) 2820-2827.
[113] P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong,
and S. Choopun, “Ethanol sensing properties of CuO nanowires prepared by an
oxidation reaction,” Ceram. Int. 35 (2009) 649-652.
[114] Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, and J. H. Lee, “CuO nanowire gas sensors
for air quality control in automotive cabin,” Sens. Actuators B 135 (2008) 298-303.
[115] P. Samarasekara, R. N. Kumara, and N. U. S. Yapa, “Sputtered copper oxide (CuO) thin
films for gas sensor devices,” J. Phys. Condens. Matter 18 (2006) 2417-2420.
[116] S. Rackauska, A. G. Nasibulin, H. Jiang, Y. Tian, V. I. Kleshch, J. Sainio, E. D.
Obraztsova, S. N. Bokova, A. N. Obraztsov, and E. I. Kauppinen, “A novel method for
metal oxide nanowire synthesis,” Nanotechnology 20 (2009) 165603 1-8.
[117] C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, “Field Emission from Various CuO
Nanostructures,” Appl. Phys. Lett. 83 (2003) 3383-3385.
[118] S. C. Yeon, W. Y. Sung, W. J. Kim, S. M. Lee, H. Y. Lee, and Y. H. Kim, “Field
48
emission characteristics of CuO nanowires grown on brown-oxide-coated Cu films on
Si substrates by conductive heating in Air,” J. Vac. Sci. Technol. B 24 (2006) 940-944.
[119] J. Y. Xiang, J. P. Tu, X. H. Huang, and Y. Z. Yang, “A comparison of anodically grown
CuO nanotube film and Cu 2 O film as anodes for lithium ion batteries,” J. Solid State
Electrochem. 12 (2008) 941-945.
[120] S. Grugeon, S. Laruelle, R. H. Urbina, L. Dupont, P. Poizot, and J. M.
Tarascon,“Particle size effects on the electrochemical performance of copper oxide
toward lithium,” J. Electrochem. Soc. 148 (2001) A285-A292.
[121] L. B. Chen, N. Lu, C. M. Xu, H. C. Yu, and T. H. Wang, “Electrochemical performance
of polycrystalline CuO nanowires as anode material for Li ion batteries,” Electrochim.
Acta 54 (2009) 4198-4201.
[122] Y. K. Su, C. M. Shen, H. T. Yang, H. L. Li, and H. J. Gao, “Controlled synthesis of
highly ordered CuO nanowire Arrays by template-based sol-gel route,” Trans.
Nonferrous Met. Soc. China 17 (2007) 783-786.
[123] R. Yang and L. Gao, “Novel way to synthesize CuO nanocrystals with various
morphologies,” Chem. Lett. 33 (2004) 1194-1195.
[124] X. G. Wen, W. X. Zhang, and S. H. Yang, “Synthesis of Cu(OH) 2 and CuO nanoribbon
arrays on a copper surface,” Langmuir 19 (2003) 5898-5903.
[125] F. R. N. Nabarro, and P. J. Jackson, “Growth of crystal whiskers, in growth and
perfection of crystal growth,” R. H. Doremus, B. W. Roberts, and D. Turnbull pp.
13-120, 1958, Wiley.
[126] R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, and H. Nakajima,
“Formation of oxide nanotubes via oxidation of Fe, Cu and nanowires and their
structural stability: difference in formation and shrinkage behavior of interior pores,”
Acta Mater. 57 (2009) 5046-5052 .
[127] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R.
Soc. Lond. A 119 (1928) 173-181.
[128] V. M. Aguero and R. C. Adamo, “Space applications of spindt cathode field emission
arrays,” Spacecraft Charging Technology Conference 6 (2000) 347-352.
[129] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, and Y. W. Jin, “Fully sealed,
high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett. 75 (1999)
3129-3131.
[130] P. Serbun, F. Jordan, A. Navitski, G. Muller, I. Alber, M. E. Toimil-Molares, and C.
Trautmann, “Copper nanocones grown in polymer ion-track membranes as field
emitters,” Eur. Phys. J. Appl. Phys. 58 (2012) 10402-p1 – 10402-p5
[131] B. R. Huang, C. S. Yeh, D. C. Wang, J. T. Tan, and J. Sung, “Field emission studies of
amorphous carbon deposited on copper nanowires grown by cathodic arc plasma
49
deposition,” New. Carbon. Mater. 24 (2009) 97-101.
[132] I. C. Chang, T. K. Huang, K. L. Huang, Y. F. Tzeng, C. W. Peng, F. M. Pan, C. Y. Lee,
and H. T. Chiu, “Growth of pagoda-topped tetragonal copper nanopillar arrays,” ACS
Appl. Mater. Inter. 1 (2009) 1375-1378.
[133] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, and E. Schaller, “Scanning field
emission from patterned carbon nanotube films,” Appl. Phys. Lett. 76 (2000)
2071-2073.
[134] H. Y. Jung, S. M. Jung, G. H. Gu, and J. S. Suh, “Anodic aluminum oxide membrane
bonded on a silicon wafer for carbon nanotube field emitter arrays,” Appl. Phys. Lett. 89
(2006) 013121-1 - 013121-3.
[135] P. Serbun, F. Jordan, A. Navitski, G. Muller, I. Alber, M. E. T. Molares, and C.
Trautmann, “Copper nanocones grown in polymer ion-track membranes as field
emitters,” Eur. Phys. J. Appl. Phys. 58 (2012) 10402p1-10402p5.
[136] G. S. Sekhon, S. Kumar, C. Kaur, N. K. Verma, C.H. Lu, and S. K. Chakarvarti, “An
efficient novel low voltage field electron emitter with cathode consisting of template
synthesized copper microarrays,” J. Mater. Sci. 22 (2011) 1725–1729.
[137] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai, and L. J. Chen, “High-density
ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication
and excellent field emission properties,” Nanotechnology 18 (2007) 505305.
[138] L. Xu, W. Li, J. Xu, J. Zhou, L. Wu, X. G. Zhang, Z. Y. Ma, and K. J. Chen,
“Morphology control and electron field emission properties of high-ordered Si
nanoarrays fabricated by modified nanosphere lithography,” Appl. Surf. Sci. 255 (2009)
5414–5417.
[139] A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40
(1944) 546-551.
[140] F. M. Chang, S. L. Cheng, S. J. Hong, Y. J. Sheng, and H. K. Tsao, “Superhydrophilicity
to superhydrophobicity transition of CuO nanowire films,” Appl. Phys. Lett. 96 (2010)
114101-1 – 114101-3
[141] Z. Song, Y. Xie, S. Yao, and H. Wang, “Field emission properties of electrodeposited
cobalt nanowire arrays grown in anodic aluminum oxide,” Mater. Lett. 65 (2011) 44-45
[142] A. N. Banerjee, S. Qian, and S. W. Joo, “Large field enhancement at electrochemically
grown quasi-1D Ni nanostructures with low-thershold cold-field electron emission,”
Nanotechnology 22 (2011) 1-8
[143] I. Chakraborty and P. Ayyub, “Controlled clustering in metal nanorod arrays leads to
strongly enhanced field emission characteristics,” Nanotechnology 23 (2012) 1-7 |