參考文獻 |
Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-811.
2. Rokitskaya, T.I., Indolicidin action on membrane permeability: Carrier mechanism versus pore formation. Biochimica et Biophysica Acta, 2011. 1808(1): p. 91-97.
3. Subbalakshmi, C., et al, Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. Journal of biosciences, 1998. 23(1): p. 9-13.
4. C. E. Thomas, et al., Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics, 2003. 4(5): p. 346-358.
5. Walther, W.a.U.S., Viral Vectors for Gene Transfer-A Review of Their Use in the Treatment of Human Diseases. Drugs, 2000. 60(2): p. 249-271.
6. Yang, J.P.a.L.H., Direct gene transfer to mouse melanoma by intratumor injection of free DNA. Gene Therapy, 1996. 3(6): p. 542-548.
7. E. Neumann , et al., Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO Journal, 1982. 1(7): p. 841–845.
8. Fromm, M., et al., Expression of genes transferred into monocot and dicot plant cells by electroporation. Proceedings of the National Academy of Sciences of the United States of America, 1985. 82(17): p. 5824–5828.
9. Gao, X., et al., Nonviral gene delivery: What we know and what is next. Aaps Journal, 2007. 9(1): p. E92-E104.
10. Williams, R.S., et al., Introduction of Foreign Genes into Tissues of Living Mice by DNA-Coated Microprojectiles. Proceedings of the National Academy of Sciences of the United States of America, 1998. 88(7): p. 2726-2730.
11. Yang, N.S., et al., In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(24): p. 9568-9572.
12. Felgner, P.L., et al., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America, 1987. 84(21): p. 7413-7417.
13. Farhood, H., et al., The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochimica Et Biophysica Acta, 1995. 1235(2): p. 289-295.
14. Miller, A.D., The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy. Current Medicinal Chemistry, 2003. 10(14): p. 1195-211.
15. Wagner, E.et al., Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proceedings of the National Academy of Sciences of the United States of America
1991. 88(10): p. 4255.
16. Kilk, K.et al., Evaluation of transportan 10 in PEI mediated plasmid delivery assay. Journal of Controlled Release, 2005. 103(2): p. 511-523.
17. Beyerle, A.et al., Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice. Journal of Controlled Release, 2011. 151(1): p. 51-56.
18. Kim, S. H.et al., Comparative Evaluation of Target-Specific GFP Gene Silencing Efficiencies for Antisense ODN, Synthetic siRNA, and siRNA Plasmid Complexed with PEI-PEG-FOL Conjugate. Bioconjugate Chemistry, 2006. 17(1): p. 241-244.
19. Tseng, S. J. and Tang, S. C., Development of poly(amino ester glycol urethane)/siRNA polyplexes for gene silencing. Bioconjugate Chemistry, 2007. 18(5): p. 1383-1390.
20. Frankel, A. D. and Pabo, C. O.,, Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988. 55(6): p. 1189-1193.
21. Joliot, A., et al., Antennapedia homeobox peptide regulates neural morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(5): p. 1864-1868.
22. Gupta, B., et al., Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. . Advanced Drug Delivery Reviews, 2005. 57(4): p. 637-651.
23. Endoh, et al., Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. . Advanced Drug Delivery Reviews, 2009. 61(9): p. 704-709.
24. Sebbage, V., Cell-penetrating peptides and their therapeutic applications. Bioscience Horizons, 2009. 2(1).
25. Patel, L.N., et al., Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 2007. 24(11): p. 1977-1992.
26. Richard, J.P., et al., Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. . The Journal of Biological Chemistry, 2003. 278(1): p. 585-590.
27. Varkouhi, A.K., et al, Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 2011. 151(3): p. 220-228.
28. Ladokhin, A., et al.,, Bilayer Interactions of
Indolicidin, a Small Antimicrobial Peptide Rich in Tryptophan, Proline, and
Basic Amino Acids. Biophysical Journal, 1997. 72(2, Part 1): p. 794-805.
29. Rozek, A., et al, Structure of the Bovine
Antimicrobial Peptide Indolicidin Bound to Dodecylphosphocholine and
Sodium Dodecyl Sulfate Micelles. Biochemistry, 2000. 39(51): p. 15765-15774.
30. Halevy, R., et al., Membrane binding and permeation by indolicidin analogs
studied by a biomimetic lipid/polydiacetylene vesicle assay. . Peptides, 2003. 24(11): p. 1753-1761.
31. Robinson, W., et al., Anti-HIV-1 activity of indolicidin, an antimicrobial
peptide from neutrophils. . Journal of Leukocyte Biology, 1998. 63(1): p. 94-100.
32. Schluesener, H.J., et al., Leukocytic antimicrobial peptides kill autoimmune
T cells. Journal of Neuroimmunology. Journal of Neuroimmunology, 1993. 47(2): p. 199-202.
33. Subbalakshmi, C., et al., Requirements for antibacterial and hemolytic
activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Letters, 1996. 395(1): p. 48-52.
34. Ahmad, I., et al., Liposomal entrapment of the neutrophil-derived peptide
indolicidin endows it with in vivo antifungal activity. Biophysica Acta (BBA) - Biomembranes, 1995. 1237(2): p. 109-114.
35. Ester , J.K., et al Application of an HIV gp41-Derived Peptide for Enhanced Intracellular Trafficking of Synthetic Gene and siRNA Delivery Vehicles. Bioconjugate Chemistry, 2008. 19: p. 920–927.
36. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 2005. 3(3): p. 238-250.
37. Yang, L., et al., Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal, 2001. 81(3): p. 1475-1485.
38. Chan, D.I., et al., Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochimica et Biophysica Acta,, 2006. 1758(9): p. 1184-1202.
39. Biggin, P., et al.,, Interactions of alpha-helices with lipid bilayers: a review of simulation studies. . Biophysical Chemistry, 1999. 76(3): p. 161-183.
40. Miteva, M., et al., Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Letters, 1999. 462(1-2): p. 155-158.
41. Tieleman, D.P., The molecular basis of electroporation. Biochemistry, 2004. 5: p. 10.
42. Pokorny, A., et al., Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Biochemistry, 2005. 44(27): p. 9538-9544.
43. Nakase, I., et al., Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. . Biochemistry, 2007. 46(2): p. 492-501.
44. Adler, A., et al.,, Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. . Nano Today, 2010. 5(6): p. 553-569.
45. Zamore, P.D., et al., RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. . Cell, 2000. 101(1): p. 25-33.
46. Elbashir, S.M., et al., RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 2001. 15(2): p. 188-200.
47. Chatterjee-Kishore, M., et al., Exploring the sounds of silence: RNAi-mediated gene silencing for target identification and validation. . Drug Discovery Today, 2005. 10(22): p. 1559-1565.
48. Hannon, G.J., RNA interference. Nature 2002. 418(6894): p. 244-251.
49. Wang, J., et al., Delivery of siRNA therapeutics: barriers and carriers. AAPS Journals, 2010. 12(4): p. 492-503.
50. Timmons, L., et al., Specific interference by ingested dsRNA. Nature 1998. 395(6705): p. 854.
51. Williams, B.R., Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochemical Society Transactions. Biochemical Society Transactions, 1997. 25(2): p. 509-513.
52. Elbashir, S., et al., Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002. 26(2): p. 199-213.
53. Reynolds, A., et al., Rational siRNA design for RNA interference. . Nature Biotechnol, 2004. 22(3): p. 326-330.
54. Venkatesan, N., et al., Peptide conjugates of oligonucleotides: synthesis and applications. . Chemical Reviews, 2006. 106(9): p. 3712-3761.
55. Stetsenko, D., et al., Efficient conjugation of peptides to oligonucleotides by "native ligation". The Journal of Organic Chemistry, 2000. 65(16): p. 4900-4908.
56. Ede, N., et al., Routine preparation of thiol oligonucleotides: application to the synthesis of oligonucleotide-peptide hybrids. Bioconjugate Chemistry, 1994. 5(4): p. 373-378.
57. Zatsepin, T.S., et al., Synthesis of peptide-oligonucleotide conjugates with single and multiple peptides attached to 2’-aldehydes through thiazolidine, oxime, and hydrazine linkages. . Bioconjugate Chemistry, 2002. 13(4): p. 822-830.
58. Lee, J., et al., Self-assembled RNA interference microsponges
for efficient siRNA delivery. Nature materials, 2012. 11: p. 316–322.
59. Smith, T., et al., Attenuation of green fluorescent protein half-life in mammalian cells. Protein Engineering, 1999. 12(12): p. 1035-1040.
60. Swami, A., et al., Imidazolyl-PEI modified nanoparticles for enhanced gene delivery. International Journal of Pharmaceutics, 2007. 335: p. 180–192. |