參考文獻 |
[1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913 (1987).
[2] Yousuke Setoguchi and Chihaya Adachi, “Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers,” J. Appl. Phys., 108, 084516 (2010).
[3] Chih-Wei Chu, Chao-Feng Sung, Yuh-Zheng Lee, Kevin Cheng, “Improved performance in n-channel organic thin film transistors by nanoscale interface modification,” Organic Electronics 9, 262–266 (2008).
[4] D. Wörhle, D. Meissner, “Organic solar cells,” Adv. Mater. 3, 129 (1991).
[5] http://www.flickr.com/photos/rdecom/4146880795/
[6] R. M. A. Dawson, M. G. Kane, “Pursuit of Active Matrix Organic Light Emitting Diode Displays,” SID Int. Symp. Digest Tech. Papers 29, 11 (1998).
[7] Hajime Nakanotani, Ryota Kabe, Masayuki Yahiro, Taishi Takenobu1, Yoshihiro Iwasa1, and Chihaya Adachi “Blue-Light-Emitting Ambipolar Field-Effect Transistors Using an Organic Single Crystal of 1,4-Bis(4-methylstyryl)benzene,” Applied Physics Express, 1, 091801 (2008).
[8] James S. Swensen, Cesare Soci, Alan J. Heeger, “Light emission from an ambipolar semiconducting polymer field-effect transistor,” Appl. Phys. Lett., 87, 253511 (2005).
[9] Suganuma, N., Shimoji, N., Oku, Y. and Matsushige, K., “Novel organic light-emitting transistors with PN-heteroboundary carrier recombination sites fabricated by lift-off patterning of organic semiconductor thin-films,” J. Mater. Res., 22, 2982–2986 (2007).
[10] J. Zaumseil, C. L. Donley, J.-S. Kim, R. H. Friend, H. Sirringhaus, “Efficient Top-Gate, Ambipolar, Light-Emitting Field-Effect Transistors Based on a Green-Light-Emitting Polyfluorene,” Adv. Mater. 18, 2708–2712 (2006).
[11] Ben B.Y. Hsu, Chunhui Duan, Ebinazar B. Namdas, Andrea Gutacker, onathan D. Yuen, Fei Huang, Yong Cao, Guillermo C. Bazan, Ifor D. W. Samuel, and Alan J. Heeger, “Control of Efficiency, Brightness, and Recombination Zone in Light-Emitting Field Effect Transistors,” Adv. Mater. 24, 1171–1175 (2012).
[12] Namdas, E. B., Ledochowitsch, P., Yuen, J. D., Moses, D. and Heeger, A. J., “High performance light emitting transistors,” Appl. Phys. Lett., 92, 183304 (2008).
[13] Dinelli, F. et al., “High-mobility ambipolar transport in organic light-emitting transistors ,” Adv. Mater. 15, 1416–1420 (2003).
[14] Raffaella Capelli, Stefano Toffanin, Gianluca Generali, Hakan Usta, Antonio Facchetti and Michele Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalentlight-emitting diodes,” Nature Materials, 9, (2010).
[15] Hoon-Seok Seo, Ying Zhang, Min-Jun An, Jong-Ho Choi, “Fabrication and characterization of air-stable, ambipolar heterojunction-based organic light-emitting field-effect transistors,” Organic Electronics 10, 1293–1299 (2009).
[16] Jung Hwa Seo, Ebinazar B. Namdas, Andrea Gutacker, Alan J. Heeger, Guillermo C. Bazan, “Solution-Processed Organic Light-Emitting Transistors Incorporating Conjugated Polyelectrolytes,” Adv.Funct. Mater., 21, 3667–3672 (2011).
[17] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. -H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf and T. M. Klapwijk, “Solution-processed ambipolar organic field-effect transistors and inverters,” Nature Materials, 2, (200).
[18] W. M. Tang, M. T. Greiner, M. G. Helander, Z. H. Lu, and W. T. Ng, “Effects of interfacial oxide layers of the electrode metals on the electrical characteristics of organic thin-film transistors with HfO2 gate dielectric,” J. Appl. Phys., 110, 044108 (2011).
[19] Tatsuya Yamamoto, and Kazuo Takimiya “Facile Synthesis of Highly -Extended Heteroarenes, Dinaphtho[2,3-b:2’,3’-f] chalcogenopheno [3,2-b] chalcogenophenes, and Their Application to Field-Effect Transistors,” J. AM. CHEM. SOC. 129, 2224–2225 (2007).
[20] Utz Zschieschang, Frederik Ante, Tatsuya Yamamoto, Kazuo Takimiya, Hirokazu Kuwabara, Masaaki Ikeda, Tsuyoshi Sekitani, Takao Someya, Klaus Kern, and Hagen Klauk, “Flexible Low-Voltage Organic Transistor and Circuits Based on a High-Mobility Organic Semiconductor with Good Air Stability,” Adv. Mater. 22, 982–985 (2010).
[21] A. Facchetti, M. Mushrush, H.E. Katz, T.J. Mark, “n-Type Building Blocks for Organic Electronics: A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with High Carrier Mobility,” Adv. Mater. 22, 33–38 (2010).
[22] Yoshinobu Hosoi, Daisuke Tsunami, Hisao Ishii, Yukio Furukawa, “Air-stable n-channel organic field-effect transistors based on N,N’-bis(4-trifluoromethylbenzyl)perylene-3,4,9,10-tetracarboxylic diimide,” Chemical Physics Letters. 436, 139–143 (2007).
[23] J. Veres, S.D. Ogier, S.W. Leeming, D.C. Cupertino, S. Mohialdin Khaffaf, “Low-k as the choice of dielectrics in organic field-effect transistors,” Adv.Funct. Mater., 13, 199–204 (2003).
[24] Jianwu Shi, Haibo Wang, De Song, Hongkun Tian, Yanhou Geng, and Donghang Yan “n-Channel, Ambipolar, and p-Channel Organic Heterojunction Transistors Fabricated with Various Film Morphologies,” Adv.Funct. Mater., 17, 397–400 (2007).
[25] Haibo Wang, and Donghang Yan “Organic heterostructure in organic field-effect transistor,” NPG Asia Mater., 2, 69–78 (2010).
[26] Daisuke Yokoyama, Masato Moriwake, and Chihaya Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys., 103, 123104 (2008). |