參考文獻 |
[1] 濱川圭弘, 光電太陽電池設計與應用 = Solar photovoltaic cells: 臺北市 : 五南, 2009.
[2] P. D. Würfel, Physics of solar cells : from basic principles to advanced concepts: Weinheim : Wiley-VCH, 2009.
[3] J. H. Zhao, A. H. Wang, and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, pp. 429-435, Jan 2001.
[4] R. Hezel, "High-efficiency OECO Czochralski-silicon solar cells for mass production," Solar Energy Materials and Solar Cells, vol. 74, pp. 25-33, Oct 2002.
[5] S. Wenham, "Buried-contact silicon solar cells," Progress in Photovoltaics: Research and Applications, vol. 1, pp. 3-10, 1993.
[6] K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, et al., "More than 16% solar cells with a new `HIT’ (doped a-Si/nondoped a-Si/crystalline Si) structure," in Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE, 1991, pp. 887-892 vol.2.
[7] W. Qi, M. R. Page, E. Iwaniczko, E. Williams, Y. Yanfa, T. H. Wang, et al., "Hot-wire CVD n-type emitter on p-type crystalline Si solar cells," in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003, pp. 1427-1430 Vol.2.
[8] M. Schmidt, H. Angermann, E. Conrad, L. Korte, A. Laades, K. Maydell, et al., "Physical and technological aspects of a-Si:H/c-Si hetero-junction solar cells," in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006, pp. 1433-1438.
[9] E. Maruyama, A. Terakawa, M. Taguchi, Y. Yukihiro, D. Ide, B. Toshiaki, et al., "Sanyo’s challenges to the development of high-efficiency HIT solar cells and the expansion of HIT business," in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006, pp. 1455-1460.
[10] M. R. Page, E. Iwaniczko, Y. Xu, Q. Wang, Y. Yan, L. Roybal, et al., "Well passivated a-Si:H back contacts for double-heterojunction silicon solar cells," in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006, pp. 1485-1488.
[11] H. Angermann, E. Conrad, L. Korte, J. Rappich, T. F. Schulze, and M. Schmidt, "Passivation of textured substrates for a-Si:H/c-Si hetero-junction solar cells: Effect of wet-chemical smoothing and intrinsic a-Si:H interlayer," Materials Science and Engineering B-Advanced Functional Solid-State Materials, vol. 159-60, pp. 219-223, Mar 2009.
[12] T. H. Wang, E. Iwaniczko, M. R. Page, D. H. Levi, Y. Yan, V. Yelundur, et al., "Effective interfaces in silicon heterojunction solar cells," in Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE, 2005, pp. 955-958.
[13] M. R. Page, E. Iwaniczko, Y. Q. Xu, L. Roybal, F. Hasoon, Q. Wang, et al., "Amorphous/crystalline silicon heterojunction solar cells with varying i-layer thickness," Thin Solid Films, vol. 519, pp. 4527-4530, May 2011.
[14] H. Angermann, W. Henrion, A. Roseler, and M. Rebien, "Wet-chemical passivation of Si(111)- and Si(100)-substrates," Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 73, pp. 178-183, Apr 2000.
[15] H. Angermann, W. Henrion, M. Rebien, and A. Roseler, "Wet-chemical passivation and characterization of silicon interfaces for solar cell applications," Solar Energy Materials and Solar Cells, vol. 83, pp. 331-346, Jul 2004.
[16] H. Angermann, "Passivation of structured p-type silicon interfaces: Effect of surface morphology and wet-chemical pre-treatment," Applied Surface Science, vol. 254, pp. 8067-8074, Oct 2008.
[17] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, et al., "Twenty-two percent efficiency HIT solar cell," Solar Energy Materials and Solar Cells, vol. 93, pp. 670-673, Jun 2009.
[18] S. Tohoda, D. Fujishima, A. Yano, A. Ogane, K. Matsuyama, Y. Nakamura, et al., "Future directions for higher-efficiency HIT solar cells using a thin silicon wafer," Journal of Non-Crystalline Solids, vol. 358, pp. 2219-2222, Sep 2012.
[19] T. D. Moustakas, D. A. Anderson, and W. Paul, "Preparation of highly photoconductive amorphous silicon by rf sputtering," Solid State Communications, vol. 23, pp. 155-158, 7// 1977.
[20] T. D. Moustakas, "Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets," in US 4508609 A, ed, 1983.
[21] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto, and T. Meguro, "P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering," Physica B-Condensed Matter, vol. 308, pp. 257-260, Dec 2001.
[22] M. M. de Lima, F. L. Freire, and F. C. Marques, "Boron doping of hydrogenated amorphous silicon prepared by rf-co-sputtering," Brazilian Journal of Physics, vol. 32, pp. 379-382, Jun 2002.
[23] M. M. de Lima and F. C. Marques, "On the doping mechanism of boron-doped hydrogenated amorphous silicon deposited by rf-co-sputtering," Journal of Non-Crystalline Solids, vol. 299, pp. 605-609, Apr 2002.
[24] Y. Ohmura, M. Takahashi, M. Suzuki, A. Emura, N. Sakamoto, T. Meguro, et al., "N-type (P, Sb) and p-type (B) doping of hydrogenated amorphous Si by reactive rf co-sputtering," Physica Status Solidi B-Basic Research, vol. 235, pp. 111-114, Jan 2003.
[25] A. Tabata, J. Nakano, K. Mazaki, and K. Fukaya, "Film-thickness dependence of structural and electrical properties of boron-doped hydrogenated microcrystalline silicon prepared by radiofrequency magnetron sputtering," Journal of Non-Crystalline Solids, vol. 356, pp. 1131-1134, May 2010.
[26] D. Girginoudi, C. Tsiarapas, and N. Georgoulas, "Properties of a-Si:H films deposited by RF magnetron sputtering at 95 degrees C," Applied Surface Science, vol. 257, pp. 3898-3903, Feb 2011.
[27] T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, "Development status of high-efficiency HIT solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. 18-21, Jan 2011.
[28] 李正中, 薄膜光學與鍍膜技術: 臺北縣新店市 : 藝軒, 2001.
[29] 伍秀菁, 真空技術與應用 = Vacuum technology & application: 新竹市 : 國科會精儀中心, 2001.
[30] V. K. Khanna, "Physical understanding and technological control of carrier lifetimes in semiconductor materials and devices: A critique of conceptual development, state of the art and applications," Progress in Quantum Electronics, vol. 29, pp. 59-163, 2005.
[31] V. Benda, Power semiconductor devices : theory and applications: Chichester ; New York : Wiley, 1999.
[32] D. A. Neamen, Semiconductor physics and devices : basic principles: Boston : McGraw-Hill, 2003.
[33] K. Maki, D. Fujishima, H. Inoue, Y. Tsunomura, T. Asaumi, S. Taira, et al., "High-efficiency HIT solar cells with a very thin structure enabling a high Voc," in Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, 2011, pp. 000057-000061.
[34] M. A. Green, "Solar cell fill factors: General graph and empirical expressions," Solid-State Electronics, vol. 24, pp. 788-789, 8// 1981.
[35] Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, "Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 30, pp. 1008-1014, May 1991.
[36] 王宣文, "以濺鍍法製作矽異質接面太陽能電池之硏究 : 矽薄膜特性對元件效率的影響 = Research of high efficiency silicon heterojunction solar cell fabricated by sputtering:impact of silicon thin film properties on device performance," 矽薄膜特性對元件效率的影響, 博士論文--國立中央大學光電科學硏究所, 2012.
[37] 許峰誠, "以射頻濺鍍製作異質接面矽太陽能電池之研究 = Research on the heterojunction silicon solar cell using radio-frequency sputtering," Research on the heterojunction silicon solar cell using radio-frequency sputtering, 碩士論文--國立中央大學光電科學研究所, 2011.
[38] 鄧旭軒, "以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之硏究 = Fabrication of P type and N type Hydrogenated microcrystalline Silicon thin films using RF magnetron sputtering," Fabrication of P type and N type Hydrogenated microcrystalline Silicon thin films using RF magnetron sputtering, 碩士論文--國立中央大學光電科學硏究所, 2008.
[39] Q. H. Fan, M. Deng, X. B. Liao, and X. M. Deng, "Damage mechanisms in thin film solar cells during sputtering deposition of transparent conductive coatings," Journal of Applied Physics, vol. 105, Feb 2009.
[40] G. Viera, S. Huet, and L. Boufendi, "Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy," Journal of Applied Physics, vol. 90, pp. 4175-4183, 2001.
[41] W. Bronner, J. P. Kleider, R. Brüggemann, P. Roca i Cabarrocas, D. Mencaraglia, and M. Mehring, "Comparison of transport and defects properties in hydrogenated polymorphous and amorphous silicon," Journal of Non-Crystalline Solids, vol. 299–302, Part 1, pp. 551-555, 4// 2002.
[42] 林詠祥, "金屬矽化物薄膜與矽/矽鍺界面反應之研究," 碩士論文--國立中央大學電機工程研究所, 2004.
[43] R. P. Yang, N. Su, P. Bonfanti, J. X. Nie, J. Ning, and T. T. Li, "Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSi(x) modules," Journal of Vacuum Science & Technology B, vol. 28, pp. 56-61, Jan 2010.
[44] 游政璋, "點接觸電極與背面鈍化層結構對異質接面太陽能電池效率之影響 = Influence of point contact electrode and back surface passivation on HJ cell efficiency," Influence of point contact electrode and back surface passivation on HJ cell efficiency, 碩士論文--國立中央大學光電科學與工程學系, 2012.
[45] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 39)," Progress in Photovoltaics, vol. 20, pp. 12-20, Jan 2012.
[46] N. Hernandez-Como and A. Morales-Acevedo, "Simulation of hetero-junction silicon solar cells with AMPS-1D," Solar Energy Materials and Solar Cells, vol. 94, pp. 62-67, Jan 2010.
[47] 陳柏丞, "非(微)晶矽薄膜太陽能電池之能隙結構研究 = Research on the bandgap engineering of micromorph silicon thin-film solar cells," Research on the bandgap engineering of micromorph silicon thin-film solar cells, 碩士論文--國立中央大學光電科學研究所, 2011.
[48] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation," Solar Energy Materials and Solar Cells, vol. 92, pp. 673-681, Jun 2008.
[49] N. Hernandez-Como and A. Morales-Acevedo, "Hetero-junction (HIT) silicon solar cell model for AMPS-1D simulation," in Electrical Engineering, Computing Science and Automatic Control, 2008. CCE 2008. 5th International Conference on, 2008, pp. 449-454.
[50] R. A. Sinton, A. Cuevas, and M. Stuckings, "Quasi-steady-state photoconductance, a new method for solar cell material and device characterization," in Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE, 1996, pp. 457-460.
[51] R. A. Sinton and A. Cuevas, "Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data," Applied Physics Letters, vol. 69, p. 2510, 1996.
[52] Handbook of semiconductor wafer cleaning technology : science, technology, and applications: Park Ridge, N.J., U.S.A. : Noyes Publications, 1993.
[53] L. Li, H. Bender, G. Zou, P. W. Mertens, M. A. Meuris, and M. M. Heyns, "Improvement of high temperature water rinsing and drying for HF-last wafer cleaning," Journal of the Electrochemical Society, vol. 143, pp. 233-237, Jan 1996.
[54] S. Watanabe and Y. Sugita, "The role of dissolved-oxygen in hot-water during dissolving oxides and terminating silicon surfaces with hydrogen," Surface Science, vol. 327, pp. 1-8, Apr 1995.
[55] K. Hermansson, U. Lindberg, B. Hok, and G. Palmskog, "Wetting properties of silicon surfaces," in Solid-State Sensors and Actuators, 1991. Digest of Technical Papers, TRANSDUCERS ’91., 1991 International Conference on, 1991, pp. 193-196. |