博碩士論文 101226048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.189.189.19
姓名 王佑庭(Yu-Ting Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以濺鍍法與表面鈍化處理製作矽異質接面太陽能電池
(Fabrication of Silicon Heterojunction Solar Cell by Sputtering Method and Wet-Chemical Pretreatment)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在探討濺鍍製作摻雜含氫矽薄膜用於矽異質接面太陽能電池上(Silicon Heterojunction solar cell, SHJ solar cell)與矽基板表面鈍化處理探討。濺鍍之優勢在於無毒製程,其工作氣體僅有氬氣與氫氣,透過適當的靶材選用即可,不過濺鍍之矽薄膜摻雜不易,可藉由額外硼顆粒置於P型矽靶材上幫助摻雜;且濺鍍過程中易有轟擊效應破壞薄膜表面,調整製程參數如加大靶材到基板距離、減低功率可減低此效應,如何以濺鍍方式製作出應用於異質接面電池等級之矽薄膜與完整的元件製作流程為本研究主要目標。透過主動層優化與金屬電極挑選,最佳之元件表現轉換效率12.3 % 、開路電壓507 mV、短路電流36.1 mA/cm2 與填充因子66.8 %。
矽異質接面電池中PN介面處理決定了元件品質,其中為了有好的PN介面常利用本質層鈍化矽表面及化學表面處理,本研究透過化學處理方式得到缺陷密度最低之矽表面並探討各種化學處理對於矽表面反應機制,研究與分析結果顯示以80 ℃去離子水處理之樣品有最佳鈍化效果及元件表現。
摘要(英) This research aims at the applications of boron-doped silicon thin films fabricated by rf-magnetron sputtering and wet-chemical pretreatment on silicon heterojunction solar cell (SHJ solar cell).
The advantage of sputtering method is its nontoxic process. The silicon thin film deposited by sputtering method needs argon and hydrogen as the working gases and the suitable target. However the disadvantages of the sputtering method are its serious ion-bombardment and low doping efficiency. One of the solutions is to increase the distance between target and substrate to avoid the ion-bombardment and place boron grains on target to enhance thin film doping concentration. In the research, we analyzed the p-type silicon film deposited using sputtering method and applied to the silicon heterojuction solar cell. After the optimizations of the active layer thickness and metal electrode material, the best device performance is achieved with conversion efficiency 12.3 %, open-circuit voltage 507 mV, short-circuit current 36.1 mA/cm2, and fill factor 66.8 %.
The performances of PV devices are influenced by the PN interface in silicon heterojunction solar cell. In order to have a better interface quality, the intrinsic silicon thin film passivation and wet-chemical pretreatment is very important. In this thesis, a wet-chemical pretreatment is applied to reduce the defect density of the silicon surface. The results showed that when the wafer was cleaned under an 80℃ deionized-water treatment, the defect density can be reduced and the wafer has the best surface quality.
關鍵字(中) ★ 矽異質接面太陽能電池
★ 濺鍍
★ 表面鈍化
關鍵字(英) ★ SHJ solar cell
★ sputtering
★ surface passivation
論文目次 目錄
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 異質接面太陽能電池之發展 2
1.2.2 以濺鍍法鍍製含氫矽薄膜 4
1.3 研究動機 6
1.4 本文架構 6
第二章 基本理論 7
2.1 矽異質接面太陽能電池 7
2.2 物理氣象沉積-射頻磁控濺鍍 8
2.3 載子生命週期與表面缺陷密度和元件之關係 10
第三章 異質接面太陽能電池製作 16
3.1 製程設備 16
3.2 量測與分析工具 17
3.2.1 吸收係數與光學能隙 17
3.2.2 暗導電率與活化能量測 18
3.3 符合元件品質之摻雜含氫矽薄膜 19
3.3.1 濺鍍摻雜含氫矽薄膜特性 19
3.3.2 濺鍍摻雜含氫矽薄膜穩定性 23
3.4 金屬電極 26
3.5 元件製作流程 31
3.6 本章結論 33
第四章 基板表面處理與元件之關係 35
4.1 元件模擬 35
4.2 基本鈍化層對於矽基板影響 38
4.2.1 表面化學鈍化處理探討 38
4.2.2 表面處理之鈍化效果 42
4.3 基本鈍化層對元件特性之影響 44
4.4 本章結論 46
第五章 結論與未來工作 48
參考文獻 50
參考文獻 [1] 濱川圭弘, 光電太陽電池設計與應用 = Solar photovoltaic cells: 臺北市 : 五南, 2009.
[2] P. D. Würfel, Physics of solar cells : from basic principles to advanced concepts: Weinheim : Wiley-VCH, 2009.
[3] J. H. Zhao, A. H. Wang, and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, pp. 429-435, Jan 2001.
[4] R. Hezel, "High-efficiency OECO Czochralski-silicon solar cells for mass production," Solar Energy Materials and Solar Cells, vol. 74, pp. 25-33, Oct 2002.
[5] S. Wenham, "Buried-contact silicon solar cells," Progress in Photovoltaics: Research and Applications, vol. 1, pp. 3-10, 1993.
[6] K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, et al., "More than 16% solar cells with a new `HIT’ (doped a-Si/nondoped a-Si/crystalline Si) structure," in Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE, 1991, pp. 887-892 vol.2.
[7] W. Qi, M. R. Page, E. Iwaniczko, E. Williams, Y. Yanfa, T. H. Wang, et al., "Hot-wire CVD n-type emitter on p-type crystalline Si solar cells," in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003, pp. 1427-1430 Vol.2.
[8] M. Schmidt, H. Angermann, E. Conrad, L. Korte, A. Laades, K. Maydell, et al., "Physical and technological aspects of a-Si:H/c-Si hetero-junction solar cells," in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006, pp. 1433-1438.
[9] E. Maruyama, A. Terakawa, M. Taguchi, Y. Yukihiro, D. Ide, B. Toshiaki, et al., "Sanyo’s challenges to the development of high-efficiency HIT solar cells and the expansion of HIT business," in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006, pp. 1455-1460.
[10] M. R. Page, E. Iwaniczko, Y. Xu, Q. Wang, Y. Yan, L. Roybal, et al., "Well passivated a-Si:H back contacts for double-heterojunction silicon solar cells," in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006, pp. 1485-1488.
[11] H. Angermann, E. Conrad, L. Korte, J. Rappich, T. F. Schulze, and M. Schmidt, "Passivation of textured substrates for a-Si:H/c-Si hetero-junction solar cells: Effect of wet-chemical smoothing and intrinsic a-Si:H interlayer," Materials Science and Engineering B-Advanced Functional Solid-State Materials, vol. 159-60, pp. 219-223, Mar 2009.
[12] T. H. Wang, E. Iwaniczko, M. R. Page, D. H. Levi, Y. Yan, V. Yelundur, et al., "Effective interfaces in silicon heterojunction solar cells," in Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE, 2005, pp. 955-958.
[13] M. R. Page, E. Iwaniczko, Y. Q. Xu, L. Roybal, F. Hasoon, Q. Wang, et al., "Amorphous/crystalline silicon heterojunction solar cells with varying i-layer thickness," Thin Solid Films, vol. 519, pp. 4527-4530, May 2011.
[14] H. Angermann, W. Henrion, A. Roseler, and M. Rebien, "Wet-chemical passivation of Si(111)- and Si(100)-substrates," Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 73, pp. 178-183, Apr 2000.
[15] H. Angermann, W. Henrion, M. Rebien, and A. Roseler, "Wet-chemical passivation and characterization of silicon interfaces for solar cell applications," Solar Energy Materials and Solar Cells, vol. 83, pp. 331-346, Jul 2004.
[16] H. Angermann, "Passivation of structured p-type silicon interfaces: Effect of surface morphology and wet-chemical pre-treatment," Applied Surface Science, vol. 254, pp. 8067-8074, Oct 2008.
[17] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, et al., "Twenty-two percent efficiency HIT solar cell," Solar Energy Materials and Solar Cells, vol. 93, pp. 670-673, Jun 2009.
[18] S. Tohoda, D. Fujishima, A. Yano, A. Ogane, K. Matsuyama, Y. Nakamura, et al., "Future directions for higher-efficiency HIT solar cells using a thin silicon wafer," Journal of Non-Crystalline Solids, vol. 358, pp. 2219-2222, Sep 2012.
[19] T. D. Moustakas, D. A. Anderson, and W. Paul, "Preparation of highly photoconductive amorphous silicon by rf sputtering," Solid State Communications, vol. 23, pp. 155-158, 7// 1977.
[20] T. D. Moustakas, "Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets," in US 4508609 A, ed, 1983.
[21] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto, and T. Meguro, "P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering," Physica B-Condensed Matter, vol. 308, pp. 257-260, Dec 2001.
[22] M. M. de Lima, F. L. Freire, and F. C. Marques, "Boron doping of hydrogenated amorphous silicon prepared by rf-co-sputtering," Brazilian Journal of Physics, vol. 32, pp. 379-382, Jun 2002.
[23] M. M. de Lima and F. C. Marques, "On the doping mechanism of boron-doped hydrogenated amorphous silicon deposited by rf-co-sputtering," Journal of Non-Crystalline Solids, vol. 299, pp. 605-609, Apr 2002.
[24] Y. Ohmura, M. Takahashi, M. Suzuki, A. Emura, N. Sakamoto, T. Meguro, et al., "N-type (P, Sb) and p-type (B) doping of hydrogenated amorphous Si by reactive rf co-sputtering," Physica Status Solidi B-Basic Research, vol. 235, pp. 111-114, Jan 2003.
[25] A. Tabata, J. Nakano, K. Mazaki, and K. Fukaya, "Film-thickness dependence of structural and electrical properties of boron-doped hydrogenated microcrystalline silicon prepared by radiofrequency magnetron sputtering," Journal of Non-Crystalline Solids, vol. 356, pp. 1131-1134, May 2010.
[26] D. Girginoudi, C. Tsiarapas, and N. Georgoulas, "Properties of a-Si:H films deposited by RF magnetron sputtering at 95 degrees C," Applied Surface Science, vol. 257, pp. 3898-3903, Feb 2011.
[27] T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, "Development status of high-efficiency HIT solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. 18-21, Jan 2011.
[28] 李正中, 薄膜光學與鍍膜技術: 臺北縣新店市 : 藝軒, 2001.
[29] 伍秀菁, 真空技術與應用 = Vacuum technology & application: 新竹市 : 國科會精儀中心, 2001.
[30] V. K. Khanna, "Physical understanding and technological control of carrier lifetimes in semiconductor materials and devices: A critique of conceptual development, state of the art and applications," Progress in Quantum Electronics, vol. 29, pp. 59-163, 2005.
[31] V. Benda, Power semiconductor devices : theory and applications: Chichester ; New York : Wiley, 1999.
[32] D. A. Neamen, Semiconductor physics and devices : basic principles: Boston : McGraw-Hill, 2003.
[33] K. Maki, D. Fujishima, H. Inoue, Y. Tsunomura, T. Asaumi, S. Taira, et al., "High-efficiency HIT solar cells with a very thin structure enabling a high Voc," in Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, 2011, pp. 000057-000061.
[34] M. A. Green, "Solar cell fill factors: General graph and empirical expressions," Solid-State Electronics, vol. 24, pp. 788-789, 8// 1981.
[35] Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, "Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 30, pp. 1008-1014, May 1991.
[36] 王宣文, "以濺鍍法製作矽異質接面太陽能電池之硏究 : 矽薄膜特性對元件效率的影響 = Research of high efficiency silicon heterojunction solar cell fabricated by sputtering:impact of silicon thin film properties on device performance," 矽薄膜特性對元件效率的影響, 博士論文--國立中央大學光電科學硏究所, 2012.
[37] 許峰誠, "以射頻濺鍍製作異質接面矽太陽能電池之研究 = Research on the heterojunction silicon solar cell using radio-frequency sputtering," Research on the heterojunction silicon solar cell using radio-frequency sputtering, 碩士論文--國立中央大學光電科學研究所, 2011.
[38] 鄧旭軒, "以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之硏究 = Fabrication of P type and N type Hydrogenated microcrystalline Silicon thin films using RF magnetron sputtering," Fabrication of P type and N type Hydrogenated microcrystalline Silicon thin films using RF magnetron sputtering, 碩士論文--國立中央大學光電科學硏究所, 2008.
[39] Q. H. Fan, M. Deng, X. B. Liao, and X. M. Deng, "Damage mechanisms in thin film solar cells during sputtering deposition of transparent conductive coatings," Journal of Applied Physics, vol. 105, Feb 2009.
[40] G. Viera, S. Huet, and L. Boufendi, "Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy," Journal of Applied Physics, vol. 90, pp. 4175-4183, 2001.
[41] W. Bronner, J. P. Kleider, R. Brüggemann, P. Roca i Cabarrocas, D. Mencaraglia, and M. Mehring, "Comparison of transport and defects properties in hydrogenated polymorphous and amorphous silicon," Journal of Non-Crystalline Solids, vol. 299–302, Part 1, pp. 551-555, 4// 2002.
[42] 林詠祥, "金屬矽化物薄膜與矽/矽鍺界面反應之研究," 碩士論文--國立中央大學電機工程研究所, 2004.
[43] R. P. Yang, N. Su, P. Bonfanti, J. X. Nie, J. Ning, and T. T. Li, "Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSi(x) modules," Journal of Vacuum Science & Technology B, vol. 28, pp. 56-61, Jan 2010.
[44] 游政璋, "點接觸電極與背面鈍化層結構對異質接面太陽能電池效率之影響 = Influence of point contact electrode and back surface passivation on HJ cell efficiency," Influence of point contact electrode and back surface passivation on HJ cell efficiency, 碩士論文--國立中央大學光電科學與工程學系, 2012.
[45] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 39)," Progress in Photovoltaics, vol. 20, pp. 12-20, Jan 2012.
[46] N. Hernandez-Como and A. Morales-Acevedo, "Simulation of hetero-junction silicon solar cells with AMPS-1D," Solar Energy Materials and Solar Cells, vol. 94, pp. 62-67, Jan 2010.
[47] 陳柏丞, "非(微)晶矽薄膜太陽能電池之能隙結構研究 = Research on the bandgap engineering of micromorph silicon thin-film solar cells," Research on the bandgap engineering of micromorph silicon thin-film solar cells, 碩士論文--國立中央大學光電科學研究所, 2011.
[48] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation," Solar Energy Materials and Solar Cells, vol. 92, pp. 673-681, Jun 2008.
[49] N. Hernandez-Como and A. Morales-Acevedo, "Hetero-junction (HIT) silicon solar cell model for AMPS-1D simulation," in Electrical Engineering, Computing Science and Automatic Control, 2008. CCE 2008. 5th International Conference on, 2008, pp. 449-454.
[50] R. A. Sinton, A. Cuevas, and M. Stuckings, "Quasi-steady-state photoconductance, a new method for solar cell material and device characterization," in Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE, 1996, pp. 457-460.
[51] R. A. Sinton and A. Cuevas, "Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data," Applied Physics Letters, vol. 69, p. 2510, 1996.
[52] Handbook of semiconductor wafer cleaning technology : science, technology, and applications: Park Ridge, N.J., U.S.A. : Noyes Publications, 1993.
[53] L. Li, H. Bender, G. Zou, P. W. Mertens, M. A. Meuris, and M. M. Heyns, "Improvement of high temperature water rinsing and drying for HF-last wafer cleaning," Journal of the Electrochemical Society, vol. 143, pp. 233-237, Jan 1996.
[54] S. Watanabe and Y. Sugita, "The role of dissolved-oxygen in hot-water during dissolving oxides and terminating silicon surfaces with hydrogen," Surface Science, vol. 327, pp. 1-8, Apr 1995.
[55] K. Hermansson, U. Lindberg, B. Hok, and G. Palmskog, "Wetting properties of silicon surfaces," in Solid-State Sensors and Actuators, 1991. Digest of Technical Papers, TRANSDUCERS ’91., 1991 International Conference on, 1991, pp. 193-196.
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2013-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明