以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:54 、訪客IP:3.16.78.146
姓名 林書玄(LIN, SHU-HSUAN) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 適用20-Gbps矽基高頻傳輸線開發及其板對板光學連接模組之應用
(Development of 20-Gbps Silicon-Based Transmission Lines and Its Application to Board-to-Board Optical Interconnect Modules)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文為第一個提出將20-Gbps高頻傳輸線整合於矽基光學平台,並且應用於板對板光學連接模組之研究。此高頻傳輸線可以作為連接垂直共振腔面射型雷射、光偵測器、發射端驅動積體電路和接收端轉阻放大器等主動元件之間的高頻訊號線。而上述元件將整合於矽基光學平台上,並且透過矽基光學平台上的45矽基光學微反射面將高速光學訊號導入帶狀光纖陣列,成為一個高速板對板光學連接模組。其中面射型雷射與光偵測器的封裝以覆晶接合方式完成,而驅動積體電路及轉阻放大器與傳輸線間則以打線方式連接。
為了評估和分析用於矽基光學平台的高頻傳輸線,包含單端訊號式(single-ended)傳輸線與差動訊號式(differential)傳輸線的散射參數(scattering parameters, S-parameters)量測;傳輸線皆以共平面波導(co-planar waveguide, CPW)作為設計型式。單端訊號式傳輸線在操作頻率為50-GHz下,量測之反射損耗約為 -30.5 dB以及插入損耗約為 -0.15 dB。差動訊號式傳輸線在操作頻率為40-GHz下,量測之反射損耗約為 -20.12 dB以及插入損耗約為 -0.28 dB。
而板對板光學連接模組整體高頻特性上,量測得到清晰20-Gbps眼圖且接收端誤碼率可達到10-12等級。證實此20-Gbps高頻傳輸線之設計可實際整合於矽基光學平台,並且在板對板光學連接模組應用上更可以達到20-Gbps傳輸等級。摘要(英) The research of this thesis is first proposed that the 20-Gbps high-frequency transmission line is integrated into silicon optical bench (SiOB), and applied to board-to-board optical interconnect module. The high-frequency transmission line could be high-frequency signal line to connect among active components, like vertical-cavity surface-emitting laser (VCSEL), photo-detector (PD), driver integrated circuit (IC) of transmitter, and transimpedance amplifier (TIA) of receiver. The above components would be integrated into the SiOB to be a high-speed board-to-board optical interconnect module, and the high-speed optical signal would coupled into ribbon fiber via 45° Si-based optical micro-reflector of SiOB. In the packaging approaches, the VCSEL and PD were assembled by flip-chip bonding method and the driver IC and TIA were assembled by wire bonding method to connect with transmission line.
In order to evaluate and analyze the characteristics of transmission line, the scattering parameters (S-parameters) of passive circuit with single-ended and differential transmission lines would be measured, respectively. These transmission lines were designed based on the coplanar waveguide structure. The return loss and insertion loss of single-ended transmission line at 50-GHz were -30.5dB and -0.15dB, respectively. The differential transmission line was operated at 40-GHz, which had return loss of -20.12 dB and insertion loss of -0.28 dB.
For high-frequency characteristics of board-to-board optical interconnect module, the clear eye diagram is operated with data rate of 20-Gbps and the bit error rate (BER) of receiver can be achieved the level of 10-12. The results are confirmed the design of 20-Gbps high-frequency transmission lines can be integrated into SiOB, and apply to board-to-board optical interconnect module with transmissive level as high as 20-Gbps.關鍵字(中) ★ 20-Gbps
★ 高頻
★ 傳輸線
★ 板對板
★ 光學連接
★ 模組
★ 矽基關鍵字(英) ★ 20-Gbps
★ high frequency
★ transmission line
★ board to board
★ optical interconnect
★ module
★ silicon based論文目次 第一章 緒論 1
1-1 前言 1
1-2 板對板光學連接技術發展現況 3
1-3 以矽基光學平台為基礎之板對板光學連接模組 6
第二章 光學連接模組之高頻被動電路設計 7
2-1 高頻傳輸線設計原理與流程 9
2-2 單端式高頻傳輸線之設計與模擬………………………..…....13
2-3 差動式訊號 ...16
2-4 差動式高頻傳輸線之設計與模擬……………………......……17
第三章 光學連接模組之光學設計 23
3-1 矽基光學平台尺寸設計 23
3-2 面射型雷射與光偵測器 25
3-3 光學連接模組之光學耦合效率模擬 29
第四章 光學連接模組之製程………………………………………...31
4-1 與矽基光學平台整合之金屬製程………………………. .…....31
4-2 光學連接模組之封裝製程……………………..………33
第五章 光學連接模組之高頻特性量測…………………… ...….……37
5-1 高頻傳輸線之高頻特性量測 37
5-1-1 單端式傳輸線高頻散射參數量測結果 37
5-1-2 差動式傳輸線高頻散射參數量測結果 39
5-2 光學連接模組之光學耦合效率量測………………………......45
5-4 光學連接模組之高頻眼圖量測架構………………….....…….48
5-4 模組之發射端眼圖量測 50
5-5 模組之接收端眼圖量測 52
第六章 結論與未來展望 54
6-1 結論 54
6-2 未來展望 55
參考文獻 56參考文獻 [1] M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express, 14(15), 6823-6836 (2006)
[2] S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron., 24(2), 927-934 (2006).
[3] X. Wang and R. T. Chen, “Fully embedded board level optical interconnects—From point-to-point interconnection to optical bus architecture,” Proc. SPIE, 6899, 6899031-6899039 (2008).
[4] IMEC’s official website:
http://www.imec.be/ScientificReport/SR2010/2010/1159106.html
[5] N. Savage, “Linking with light,” IEEE Spectr. vol. 39, no. 8, pp. 32–36, 2002.
[6] R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26(14), 2136-2141 (2008).
[7] P. Lukowicz, Jürgen Jahns, R. Barbieri, P. Benabes, T. Bierhoff, A. Gauthier, M. Jarczynski, G. A. Russell, J. Schrage, W. Süllau, J. F. Snowdon, M. Wirz, and G. Tröster, “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., 9(2), 624-635 (2003)
[8] IBM’s research:
http://events.mediasite.com/Mediasite/Play/053a3c6e274f413298772b6 21867ee8e1d?catalog=accb1012-7f1b-4cc3-9b26-5cee8497f5fa
[9] Jeffrey A. Kash, Alan F. Benner, Fuad E. Doany, Daniel M. Kuchta, Benjamin G. Lee, Petar K. Pepeljugoski, Laurent Schares, Clint L. Schow, Marc Taubenblatt, “Optical interconnects in future servers,” in Proc.Opt. Fiber Commun. Conf., Los Angeles, CA, Mar. 2011, pp. 1–3, paper OWQ1.
[10] Clint L. Schow, Alexander V. Rylyakov, Christian Baks, Fuad E. Doany, and Jeff A. Kash, “25-Gb/s 6.5-pJ/bit 90-nm CMOS-Driven Multimode Optical Link” ,IEEE Photonics Tech. Letters, pp.824-826, May 2011
[11] Takashi Shiraishi, Takatoshi Yagisawa, Tadashi Ikeuchi, Satoshi Ide, and Kazuhiro Tanaka, “Cost-effective Low-loss Flexible Optical Engine with Microlens-imprinted Film for High-speed On-board Optical Interconnection” ECTC2012, pp. 1505-1510, 2012.
[12] Norio Chujo, Toru Yazaki, Toshiaki Takai,Daichi Kawamura, Yasunobu Matsuoka, Yong Lee, Toshiki Sugawara, Hiroki Yamashita, Takashi Takemoto, Yoshiaki Ishigami, Kinya Yamazaki, Yoshinori Sunaga, and Naoki Matsushima, “A 25-Gb/s× 4-Ch, 8× 8 mm2, 2.8-mm Thick Compact Optical Transceiver Module for On-Board Optical Interconnect” Optical Fiber Communication Conference. Optical Society of America, 2013.
[13] Hsu-Liang Hsiao, Hsiao-Chin Lan, Chia-Chi Chang, Chia-Yu Lee, Siou-Ping Chen, Chih-Hung Hsu, Shuo-Fu Chang, Yo-Shen Lin, Feng-Ming Kuo, Jin-Wei Shi, and Mount-Learn Wu, “Compact and passive-alignment 4-channel × 2.5-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors” Optics Express, Vol. 17, Issue 26, pp. 24250-24260 (2009)
[14] Chin T. Chen ; Hsu L. Hsiao ; Chia. C. Chang ; Po K. Shen ; Guan F. Lu ; Yun C. Lee ; Shou F. Chang ; Yo S. Lin and Mount L. Wu. “4 channels x 10-Gbps optoelectronic transceiver based on silicon optical bench technology”, Proc. SPIE 8267, Optoelectronic Interconnects XII, 82670D (February 9, 2012); doi:10.1117/12.908180.
[15] 楊凌岡,“以矽光學平台為基礎之4通道 10-Gbps光學連結模組之發射端”,(中央大學光電所碩士論文,台灣,2010).
[16] 陳進達,“以矽光學平台為基礎之4通道 10-Gbps光學連結模組之接收端”,(中央大學光電所碩士論文,台灣,2010).
[17] 盧冠甫,“矽基光學平台為技術為核心之雙向4通道 10-Gbps光學連接收發模組”,(中央大學光電所碩士論文,台灣,2011).指導教授 伍茂仁、林祐生 審核日期 2013-8-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare