博碩士論文 100226027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:52.14.125.137
姓名 陳衍廷(Yan-Ting Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用金屬微共振腔研究光與有機激發態強耦合現象
(Strong photon-exciton coupling in a metal microcavity)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 多層式雙極有機場效電晶體之研究
★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究
★ 有機染料分子薄膜之光電特性研究★ 多層結構有機電晶體之研究
★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
★ 強耦合有機微共振腔之設計與研究★ 光激發有機極化子元件之製作與量測
★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要探討光與物質耦合的現象,在研究中我們將有機材料排列成J-aggregate 結構,此排列方式會使偶極矩不為0,且由於激子生命週期短,利於激子與光有效的能量轉換。
我們也對所使用的 PDAC/DEDOC J-aggregate 薄膜,做了許多光學性質與物理結構的探討,證實它具有高吸收係數,以及奈米等級的厚度,讓我們有機會應用到光與物質耦合的光學元件中。
為了預測光子與有機激子耦合作用,我們建立了Hamiltonian的擴增矩陣模型,與多層膜矩陣的模型。利用這些模型,預期並設計出理想的微共振腔。為了有效觀察,我們將J-aggregate薄膜置入λ/2的金屬微共振腔結構中,觀察到的拉比分裂能量都比介電質微共振腔大。並利用多角度反射頻譜,可量測到極化子的色散關係,分別為上分支(UB)與下分支(LB)。而在某一角度下可觀察到兩分支最為靠近,此時光子與激子能量交換會最強烈,其分裂的能量差稱之為拉比分裂能量(Rabi splitting energy)。
在比較不同主動層厚度對拉比分裂能量後,證實能量與主動層厚度呈現線性關係,並利用角度解析螢光頻譜,確定在我們的元件中,有半光半物的極化子產生。
摘要(英) In this study, we demonstrate the phenomenon of light and matter coupling with microcavity and organic exciton. The J-aggregate structure is arranged by molecular dipole of organic material, and this arrangement is not zero dipole. The energy transfer between exciton and photon is efficient because the exciton lifetime is short.
We have discussed physical structure and optical properties in PDAC/DEDOC J-aggregate films possessed the high absorption coefficient and the nanoscale thickness. Using these phenomena we can manufacture the optical element with light-matter coupling property.
We designed the ideal microcavity using Hamiltonian amplification matrix model and multilayer matrix model in order to predict the photon-exciton coupling. To observe Rabi splitting energy we insert the J-aggregate films into λ/2 metal microcavity structure. The energy of microcavity structure is large than the dielectric resonator. The upper branch (UB) and the lower branch (LB) polarton dispersion can be measured by multi-angle reflection spectrum, respectively. The energy transfer between exciton and photon is intense while separated branch close each other at certain angle. We call this energy difference between separated branch as Rabi splitting energy.
Finally, we verify the linear relation between thickness of active layer and Rabi splitting energy. The existence of half-light and half-matter polariton in our element can be measured angle resolved fluorescence spectrum.
關鍵字(中) ★ 光子與激子激發態強耦合 關鍵字(英) ★ photon-exciton strong coupling
論文目次 目錄
摘要…………………………………………………………………........I.
Abstract…………………………………………………………………..II
致謝……………………………………………………………………..III
目錄……………………………………………………………………..VI
圖目錄…………………………………………………………………...V
表目錄……………………………………………………………..…….X
第一章 緒論……………………………………………………………..1
1-1簡介…………………………………………………………..1
1-2有機材料與光強耦合的發展………………………………..4
1-3 J-aggregate…………………………………………………...7
1-4 Layer-by-Layer 沉積法…………………………………….10
1-5 研究動機…………………………………………………...11
第二章 理論分析………………………………………………………12
2-1 利用微共振腔研究光與激子的強耦合…………………...12
2-2 微共振腔的共振模態色散關係…………………………...19
2-3 極化子的色散關係………………………………………...22
2-4 微共振腔極化子反射頻譜的模擬………………………...28
2-4-1 垂直入射單介質的穿透與反射…………………….28
2-4-2 單層膜的穿透率與反射率………………………….30
2-4-3 多層膜的穿透率與反射率………………………….33
2-4-4 斜向入射時折射率的修正………………………….34
第三章 極化子元件的設計與量測架設………………………………35
3-1 PDAC/DEDOC J-aggregate 薄膜………………………….35
3-2 PDAC/DEDOC J-aggregate 薄膜的光學特性…………….39
3-3 PDAC/DEDOC J-aggregate 薄膜的結構特性…………….46
3-4 極化子元件的設計與製作………………………………...48
3-5 極化子元件的光學量測架設……………………………...52
第四章 實驗結果與分析………………………………………………54
4-1 極化子元件反射頻譜量測結果與分析…………………...54
4-2 P(DP)5極化子元件反射頻譜的修正……………………...61
4.3 拉比分裂能量的分析……………………………………...65
4-4 極化子元件角度解析激光螢光量測結果與討論………...68
第五章 結論............................................................................................71
參考資料………………………………………………………………..73
圖目錄
圖1-1(a) 利用GaAs置入CdTe/CdMgTe的微共振腔中,所產生新特徵態的兩個分裂…………………………………………..…3
圖1-1(b) GaAs置入CdTe/CdMgTe的微共振腔中,利用不同激發強度與溫度5K量測遠場放光……………………………………..3
圖1-2 4TBPPZn J-aggregate薄膜置入微共振腔不同角度的反射頻譜……………………………………………………………....6
圖1-3 不同4TBPPZn J-aggregate薄膜厚度對拉比分裂能量的影響……………………………………………………………....6
圖1-4 不同反射鏡共振腔對拉比分裂能量的影響……………………7
圖1-5(a) J aggregate 與 H aggregate 的分子排列方式……………….9
圖1-5(b) J aggregate 與 H aggregate 激發後釋放能量的差異……….9
圖2-1 利用微共振腔研究光與激子物質強耦合概念圖……………..18
圖2-2 極化子的色散曲線……………………………………………..18
圖2-3一維微共振腔的干涉示意圖……………………………………19
圖2-4微共振腔光的能量對角度的關係圖(E_ph (0^° )=2 eV、n_eff=1.5)…………………………………………………...21
圖2-5 (a) 光與單一激子的極化子色散圖…………………………….26
圖2-5(b)光與單一激子在系統中所佔有的比例:上圖為UB系統,下圖為LB系統…………………………………………………26
圖2-6 (a) 光與兩個激子的極化子色散圖…………………………….27
圖2-6(b) 光與兩個激子在系統中所佔有的比例:上圖為UB系統,中間圖為MID系統,下圖為LB系統………………………...27
圖2-7 垂直入射單界面的反射與穿透示意圖………………………..28
圖2-8 垂直入射單層膜的穿透與反射示意圖………………………..30
圖2-9 將兩界面等效為一界面之示意圖……………………………..32
圖2-10 多層膜等效示意圖…………………………………………....33
圖3-1(a) DEDOC分子結構圖…………………………………….……38
圖3-1(b) DEDOC 單體吸收頻譜與PDAC/DEDOC J aggregate薄膜的吸收頻譜與光激發螢光頻譜…………………………..……38
圖3-2 PDAC/DEDOC J-aggregate薄膜製程圖………………………..39
圖3-3 各製程循環的頻譜: (a)穿透 (b)反射 (c)吸收………………...42
圖3-4(a) PDAC單層薄膜的光學常數…………………………………43
圖3-4(b) DEDOC的光學常數………………………………………....44
圖3-5(a) 二次反射所造成的干涉圖…………………………………..45
圖3-5(b)製程循環P(DP)1的DEDOC沉積在玻璃上穿透、反射的實驗與利用二次反射擬合結果……………..........................45
圖3-6 AFM 量測(a) PDAC/DEDOC薄膜結構圖形 (b) 玻璃與
PDAC/DEDOC薄膜結構圖形………………………………..47
圖3-7 極化子元件結構圖……………………………………………..51
圖3-8 極化子元件置入的製程循環為P(DP)2在5∘角
反射頻譜的模擬與實驗比較…………………………………51
圖3-9 多角度反射頻譜量測方法……………………………………..53
圖3-10 角度解析光激螢光頻譜量測方法……………………………53
圖4-1 E_ph (0^° )修正及模擬,N=0、1、4、5 分別為550 nm(2.25 eV)、584 nm(2.12 eV)、608 nm(2.04 eV)、629 nm(1.97 eV)…………57
圖4-2(a) P(DP)1 極化子元件多角度反射頻譜整理圖…………….....58
4-2(b) P(DP)1 極化子元件色散關係圖: 2V =180 meV………………58
圖4-3(a) P(DP)4 極化子元件多角度反射頻譜整理………………….59
圖4-3(b) P(DP)4 極化子元件色散關係圖: 2V =370 meV……………59
圖4-4(a) P(DP)5 極化子元件多角度反射頻譜整理………………….60
圖4-4(b) P(DP)5 極化子元件色散關係圖,由於Sideband吸收效應造成UB在2.5-2.7eV之間的色散不滿足理論公式…………...60
圖4-5(a) 對P(DP)5 薄膜消光係數修正………………………...……63
圖4-5(b) 實驗與修正反射頻譜比較…………………………………..63
圖4-5(c) 對P(DP)5 極化子元件修正後的色散關係圖: 2V =430 meV...........................................................................................................64
圖4-6 考慮邊帶為另一激子激發態的色散關係圖…………………..64
圖4-7(a) P(DP)4極化子元件以波長表示色散關係圖………………69
圖4-7(b)角度分析激光螢光頻譜(垂直方向)………………………….69
圖4-7(c)角度分析激光螢光頻譜(10∘方向)………………………….70
圖4-7(d)角度分析激光螢光頻譜(35∘方向)………………………….70
表目錄
表2-1 R.J. Holmes 和 S.R. Forrest在2004年物理期刊發表的數據………………………………………………………………25
表4-1 利用膜矩陣擬合極化子元件各材料的總厚度……………..…57
表4-1 各製程循環拉比分裂整理………………………………..……67
參考文獻 [1] K. B. Davis, M. -O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Ketterle, "Bose-Einstein condensation in a gas of sodium atoms", Phys. Rev., Lett. 75, 3969-3973 (1995)
[2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, "Observation of Bose-Einstein condensation in dilute atomic vapor", Science, Vol. 269, 198-201 (1995)
[3] Snoke, D. W., "Spontaneous Bose coherence of excitons and polaritons", Science, Vol. 298, 1368-1372 (2002)
[4] Butov LV, Lai CW, Ivanov AL, Gossard AC, Chemla DS, "Towards Bose-Einstein condensation of excitons in potential traps", Nature, 417(6884), 47-52 (2002)
[5] D. Snoke, S. Denev, Y. Liu, L. Pfeiffer, K. West, "Long-reang transport in excitonic dark states in coupled quantum wells", Nature, 418, 754-757 (2002)
[6] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity", Phys. Rev. Lett., 69, 3314-3317 (1992)
[7] A. Kavokin , G. Malpuech, "Polariton lasers and polariton superfluidity in microcavities", Phys. Lett., A 306, 185(2003)
[8] V. Savona, F. Tassone, C. Piermarocchi, A. Quattropani, "Stimulation of polariton photoluminescence in semiconductor microcavity structures", Phys. Rev., B 53, 13051-13062 (1996)
[9] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyman acuteska, R. André1, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, Le Si Dang, "Bose-Einstein condensation of exciton polaritons", Nature , 443, 409-414 (2006)
[10] D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, D. M. Whittaker, "Strong exciton-photon coupling in an organic semiconductor microcavity", Nature, 395, 53-55 (1998)
[11] Norris, T. B., "in confined Electrons and photons", eds Burstein, E. & Weisbuch, C., 503-521 (Plenum, New York, 1995)
[12] P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick,bS. Walker, "Strong exciton-photon coupling in a low-Q all-metal mirror", APL., 81, 3519-3521 (2002)
[13] M. G. Salt, W. C. Tan, W. L. Barnes, "Photonic band gaps and flat band edges in periodically textured metallic microcavities", Appl. Phys. Lett., 77, 193 (2000)
[14] G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R. Vladimirova, M. A. Kaliteevski, "Exciton-light coupling in single and coupled semiconductor microcavities:Polariton dispersion and polarization splitting", Phys. Rev. , B 59, 5082 (1999)
[15] Shinji Hayashi, Yuta Ishigaki, Minoru Fujii, "Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities", Phy. Rev. , B 86, 045408 (2012)
[16] Tischler JR, Bradley MS, Bulović V, Song JH, Nurmikko A., "Strong Coupling in Microcavity LED", PRL., 95, 036401 (2005)
[17] S. Kéna-Cohen & S. R. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity", Nature Photonics , 4, 371-375 (2010)
[18] Bradley, M. Scott, Bulović, Vladimir Scott, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons", Phy. Rev., B 82, 033305 (2010)
[19] Frank Würthner, E. Kaiser, R. Saha-Möller, "J-Aggregate: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Material", Angewandte Chemie, 50, 3376-3410 (2011)
[20] G. Decher, J. D. Hong, "Makromol. Chem.", Macromol. Symp. , 46, 321(1991)
[21] H. Fukumoto, Y. Yonezawa, "Thin Solid Film 1998", 327-329, 748
[22] Jonathan R. Tischler, M. Scott Bradley, Qiang Zhang, Tolga Atay, Arto Nurmikko, Vladimir Bulović, "Solid state cacity QED: Strong coupling in organic thin films", Organic Electronics, 8, 94-113 (2007)
[23] V. Savona, L.C. Andreani, P. Schwendimann, A. Quattropani, "Solid State", Commun., 93, 733 (1995)
[24] P. L. Hagelstein, S. D. Senturia, T. P. Orlando, "Introductory Applied Quantum and Statistical Physics", Massachusetts Institute of Technolofy, Boston, MA, 2000
[25] J. S. Townsend, "A Modern Approach to Quantum Mechanics", McGraw-Hill, Inc. New York, NY, 1992
[26] Panzarini, Giovanna, Andreani, Lucio Claudio, Armitage, A., Baxter, D.; Skolnick, M. S., Astratov, V. N., Roberts, J. S., Kavokin, Alexey V., Vladimirova, Maria R., Kaliteevski, M. A., "Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting", Phys., 59, 5082-5089 (1999)
[27] M S Skolnick, T A Fisher, D M Whittaker, "Strong coupling phenomena in quantum microcavity structures", Semicond. Sci. Technol., 13, 645-669 (1998)
[28] R.J. Holmesa, S.R. Forrestb, "Strong exciton-photon coupling in organic materials", Organic Electronics, 8, 77-93 (2007)
[29] Stéphane Kéna-Cohen, Stephen R. Forrestb, "Giant Davydov splitting of the lower polariton branch in a polycrystalline tetracene microcavity", Phys. Rev., B 77, 073205 (2008)
[30] David G. Lidzey1, Donal D. C. Bradley, Adam Armitage, Steve Walker, Maurice S. Skolnick, "Photon-Mediated Hybridization of Frenkel Excitons in Organic Semiconductor Microcavities", SCIENCE, 288,1620-1623 (2000)
[31] Holmes RJ, Forrest SR., "Strong Exciton-Photon Coupling and Exciton Hybridization in a Thermally Evaporated Polycrystalline Film of an Organic small Molecule", Phys., 93, 186404-1-186404-3 (2004)
[32] 李正中, "薄膜光學與鍍膜技術(第六版) ", 藝軒圖書出版社 (2009)
[33] M. Scott Bradley, Jonathan R. Tischler, Yasuhiro Shirasaki, Vladimir Bulović, "Predicting the linear optical response of J-aggregate microcavity exciton-polariton devices", Phys. Rev., B 78, 193305 (2008)
[34] M. S. Bradley, J. R. Tischler, V. Bulović, "Layer-by-Layer J-Aggregate Thin Films with a peak Absorption Constant of 〖10〗^6 〖cm〗^(-1)", Advanced Materials., 17, 1881-1886 (2005)
[35] Winfield, Jessica M., Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom ; Donley, Carrie L., Kim, Ji-Seon, "Anisotropic optical constants of electroluminescent conjugated polymer thin films determined by variable-angle spectroscopic ellipsometry", Journal Of Applied Physics, 102, 063505 (2007)
[36] D. R. Lide, "CRC Handbook of Chemistry and Physics" , CRC, Boca Raton (2000)
[37] Masaru Oda, Yuki Obara, Keita Saito, Kohei Higashi, Toshiro Tani, "Fabrication characterization and its local reflection properties of a metal-mirror microcavity with high concentrated PIC J-aggregate", Physics Procedia., 3, 1615-1620 (2010)
[38] D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, "Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation.", Phy. Rev., B 65, 195312 (2002)
[39] G. Gȕnter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba , S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer & R. Huber,"Sub-cycle switch-on of ultrastrong light-matter interaction", Nature, Vol. 458, 178-181(2009)
[40] Hui Deng, Hartmut Haug, Yoshihisa Yamamoto, "Exciton-polariton Bose-Einstein condensation", Reviews of modern physics, Vol 82, 1489-1537 (2010)
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2013-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明