博碩士論文 101226036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.144.37.178
姓名 賴啟勝(Chi-Sheng Lai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究
(Investigation of Lossy-Film-Induced Optical Effects for Maximum Transmittance into Absorption Layers of Thin-Film Solar Cells)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵
★ 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較★ 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層
★ 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧★ 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究
★ 光波至混合電漿波導極化模態轉換器★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器
★ 理論探討以金屬內部光輻射為基礎之太陽能光電轉換★ 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換
★ 具耦合電漿子增強之可見光波段電漿子光偵測器★ 適用於覆晶封裝、厚度薄型化矽基光電二極體之一維光柵: 設計與分析
★ 多原子層鋁膜中電子與聲子間之散射研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討有損中間層引介之光學效應對於實現最大光穿透率至薄膜太陽能電池吸收層之影響。
使反射率產生相對低點之薄膜厚度設計其對應之穿透率並非相對極大。在第三章更進一步指出,以單一有損薄膜為例,當薄膜之消光係數逐漸增加時,反射率之最低點與進入吸收層之穿透率之最高點分別往膜層厚度較薄及膜厚較厚之位置移動。隨著入射角度增加,橫向電場與橫向磁場極化下,使得穿透率最大之最小膜厚值(不為零),分別往高與低膜厚處。以銅銦鎵硒薄膜太陽能電池為例,因其中間層皆為有損材料在符合典型之尺寸設計規範下,可得以反射率最低作為其反射層設計之標準並不恰當,而應改以計算至吸收層之最大穿透率較為恰當。
基於二、三章之結果,第四章以模擬熱退火最佳化演算法對銅銦鎵硒薄膜太陽能電池之中間層及抗反射層厚度與折射率,在同時考慮太陽光譜加權、各層材料之色散關係與大角度入射(0~80)下做最佳化設計。最佳化之結果顯示,以最佳化之目標函數為最小平均反射率(fR)時,摻鋁氧化鋅之厚度皆接近最佳化搜尋範圍之上限厚度;改目標函數為最大平均穿透率(fT)至吸收層時,摻鋁氧化鋅之厚度皆接近搜尋下限厚度。以最大穿透率至吸收層為目標函數之最佳化結果,在大於等於兩層抗反射層設計下,平均穿透率皆大於8%,平均反射率皆小於3.81%;相比以最小反射率為目標函數時,雖然平均反射率皆小於2.45%,但平均穿透率最大僅達57.36%。考慮太陽光譜與未考慮太陽光譜加權下之最佳化結果,無論在目標函數為fR或是fT時,一至三層抗反射層之角度平均反射率,在短波段時,具太陽光譜加權之角度平均反射率皆低於無太陽光譜加權之結果,而在長波段則呈現相反行為。若比較一至三層抗反射層下角度平均穿透率,則發現目標函數為fT時,具太陽光譜加權之角度平均穿透率明顯高於無太陽光譜加權之設計;而目標函數同為fR時,有無太陽光譜加權之角度平均穿透率並無明顯差別。
摘要(英) In this research, we investigate lossy-film-induced optical effects for a maximum average transmittance into absorption layers of thin-film solar cells. Using the transfer matrix method incorporated with the Poynting theorem successfully calculates optical transmittance passing through an arbitrary interface in multilayered structure. In a single lossy film case, we show that the film thickness at which the reflectance minimum occurs does not coincide at the same thickness as having a maximum transmittance. In general, when the extinction coefficient of the film is gradually increased, the reflectance minima moves toward smaller values of film thickness while the transmittance maximum shifts in the opposite direction. As the incident angle is increased, the maximum extinction coefficient at which the maximum transmittance still exists at a non-zero film thickness increases for TE waves. In contrast, TM waves behave just oppositlely. Since the interlayers of a typical CIGS solar cell are lossy, using minimum reflectance as the requirement of anti-reflection (AR) coating designs may not be appropriate. Instead, it should be the transmittance penetrating into the absorption layer that may be appropriate as the design criterion.
Based on the results described in Chapters two and three, Chapter four reports the optimizations of interlayers and AR coating of a typical CIGS solar cell using simulated annealing (SA) algorithm incorporated with the solar irradiance spectrum for broadband (350 nm ~ 1200 nm) and omnidirectional (0~80) operations. The results show that using a target function of minimum reflectance, the thickness of AZO layer is close to the upper limit of the searching range used in SA. On the contrary, when the target function of maximum transmittance into the absorption layer is used, the AZO layer thickness is close to its lower limit. The optimized interlayers and two-layer AR coating with the maximum transmittance criterion exhibit an average transmittance of >80% and an average reflectance of <3.81%. In contrast, when a minimum reflectance requirement is used, the optimized results show an average reflectance of <2.45%, but the average transmittance is only 57.36%. When taking the solar spectrum weighting (SSW) into consideration, both target functions can result in a smaller reflectance and higher transmittance over the wavelengths with stronger solar irradiance, although the differences in the transmittance between designs with and without the SSW are subtle for the minimum reflectance designs due to a thicker AZO layer thickness.
關鍵字(中) ★ 太陽能電池
★ 薄膜
★ 穿透率
關鍵字(英) ★ solar cell
★ thin film
★ transmittance
論文目次 目錄
頁次
中文摘要..................................................i
英文摘要.................................................ii
謝誌.................................................... iv
目錄................................................... v
圈目錄..................................................vi
表目錄................................................. xii
一、緒論................................................ 1
1.1 前言. . . . .................. . . . . . . . . . .. 1
1.2 文獻回顧............................................ 3
1.3 研究動機.............................................7
二、分析方法..............................................8
2.1 平面多層有損材料中之電磁場描述. ............... . . . ... 8
2.2 完美電導體於轉移矩陣法之設定. . . ............. . . . .. 12
2.3 平面多層有損材料之於任一介面之穿透率推導...................13
2.4 程式驗證. . . . . . . . . . . . . . .... . . . . .. 19
2.5 模擬熱退火最佳化演算法簡介. . . . . . . .... . . . . .. 20
2.5.1 模擬熱退火演算法參數介紹..............................21
2.5.2 程式執行流程說明. . . . . . . . ..... ... . . . . .. 22
三、有損薄膜引介之光學效應探討...............................24
3.1 平層有損膜層於三層介質之探討............................24
3.2 以非晶矽薄膜太陽能電池為例. . . . . . .. . . . . . . .. 27
3.3 以銅銦鎵硒薄膜太陽能電池為..... . .... . ...... . ..... 29
3.3.1 探討個別損中間層引介之不匹配情形........................29
3.3.2 角度平均之厚度不匹配討論. . . .. . . . . . . . . . .. 36
3.3.3 厚度平均之角度不匹配. . . . . . . . ............ .. 40
3.4 橫向磁場下改變AZO厚度時厚度不匹配之探討..................43
四、考慮至薄膜太陽能電池之吸收層具最大穿透率之最佳化設計........ 47
4.1 最佳化設計之目標函數說明................................47
4.2 銅銦鎵硒薄膜太陽能電池之中間層與抗反射層之光學最佳化設計..... 49
4.2.1 考慮太陽光譜且最佳化目標函數為FT ..... . .... ......... 51
4.2.2 考慮太陽光譜且最佳化目標函數為fR . . . . . . . . . .. 52
4.2.3 無太陽光譜加權之最佳化設計.............................54
4.3 討論於不同之目標函數下太陽光譜加權之影響. . . . . . . . .. 58
五、結論................................................64
參考文獻................................................66
參考文獻 [1] 濱川圭弘, 光電太陽電池設計與應用. 中華民國:五南圖書出版公司,2009.
[2] M. Schneider, A. Froggatt and S. Thomas, Nuclear Power in a Post-Fukushima World: 25 Years after Chernobyl accident. Washington, D.C. U.S.A.: Worldwatch Institute, 2011.
[3] M. Victoria, C. Dominguez, I. Cesar and G. Sala, ’’Antireflective coatings for multijunction solar cells under wide-angle ray bundles,’’ Opt. Express, vol. 20, no. 7, pp. 8136-8147, Mar. 2012.
[4] E. Hecht, Optics. New York: Addison-Wesley, 2002.
[5] D. Kang , J. Kwonb, J. Shim , H. Lee, and M. Han, ’’Al2O3 antireflection layer between glass and transparent conducting oxide for enhanced light trapping in microcrystalline silicon thin film solar cells,’’ Sol. Energy Mater. Sol. Cells, vol. 101, pp. 22-25, Mar. 2012.
[6] Y. Zhao, F. Chen, Q. Shen, and L. Zhang, ’’Optimal design of light trapping in thin-film solar cells enhanced with graded sinx and sioxny structure,’’ Opt. Express, vol. 20, pp. 11121-11136, May 2012.
[7] J. N. Munday and H. A. Atwater, ’’Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,’’ Nano Lett., vol. 11, pp. 2195-2201, Oct. 2011.
[8] Yu. A. Akimov, W. S. Koh, and K. Ostrikov, ’’Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,’’ Opt. Express, vol. 17, pp. 10195-10205, Jun. 2009.
[9] O. E. Daif, L. Tong, B. Figeys, K. V. Nieuwenhuysen, A. Dmitriev, P. V. Dorpe,I Gordon, and F. Dross, ’’Front side plasmonic effect on thin silicon epitaxial solar cells,’’ Sol. Energy Mater. Sol. Cells, vol. 104, pp. 58-63, May 2012.
[10] J.-Y. Chen, W.-L. Chang, C.-K. Huang and K.-W. Sun, ’’Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,’’ Opt. Express, vol. 19, pp. 14411-14419, Jul. 18 2012.
[11] P. Spinelli, M. A. Verschuuren, and A. Polman, ’’Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,’’ Nat. Commun., vol. 3, Feb. 2012.
[12] T. Nakada, Y. Kanda, S. Kijima, Y. Komiya, D.Ohmori, H. Ishizaki, and N. Yamada, ’’Bifacial CIGS thin film solar cells,’’ 20th European Photovoltaic Solar Energy Conf., Barcelona. Spain Jun. 6-10, 2005, pp. 1736-1739
[13] K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock and J. H. Werner, ’’Role of the CdS Buffer Layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,’’ Prog. Photovolt: Res. Appl., vol. 10, no. 7, pp. 457-463, Jun. 6 2002.
[14] S. Hwang1 and J.-H. Jang, ’’3D simulations for the optimization of antireflection subwavelength structures in CIGS solar cells,’’ 20th IEEE Photovoltaic Specialists Conf., 2012.
[15] P. Yeh, Optical Waves in Layered Media. New York: Wiley, 2005.
[16] 李正中,薄膜光學與鍍膜技術.中華民國:藝軒圖書出版社, 2008.
[17] K. D. Moller, Optics: Learning by Computing with Examples Using MathCAD, Matlab, Mathematica, and Maple. New York: Springer-Verlag, 2007.
[18] D. L. Lee, Electromagnetic Principles of Integrated Optics. New York: John Wily & Sons, Inc., 1986.
[19] 李世炳, 鄒忠毅, ’’簡介導引模擬退火法及其應用’’ 物理雙月刊 , vol. 24, pp. 307-319, 2002.
[20] Y.-J. Chang and Y.-T. Chen, ’’Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum,’’ Opt. Express, vol. 19, no. S4, pp. A875-A887, Jul. 2011.
[21] A. Corana, M. Marchesi, C. Martini, and S, Ridella, ’’Minimizing multimodal functions of continuous variables with the simulated annealing algorithm,’’ ACM Trans. on Math. Soft, vol. 13, no. 3, pp. 262-280, Sept. 1987.
[22]D. Dubreuil, J.-P. Ganne, G. Bergine, and F. Terracher, ’’Optical and electrical properties between 0.4 and 12 um for Sn-doped In2O3 films by pulsed laser deposition and cathode sputtering,’’ Appl. Opt., vol. 46, no. 23, pp. 5709-5718, Aug. 2007.
[23] Y.-T. Chen, ’’Broadband Omnidirectional Antireflection Coatings for Metal-Backed Solar Cells Optimized Using Simulated Annealing Algorithm Incorporated with Solar Spectrum,’’ Master’s thesis, Dept. of Optics and Photonics, National Central Univ., Jhongli, R.O.C., 2011.
[24] G. D. Dhere, ’’Toward GW/year of CIGS production within the next decade,’’ Sol. Energy Mater. Sol. Cells, vol. 91, pp. 1376-1382, Sept. 22 2007.
[25] Available: http://refractiveindex.info/.
[26] R. E. Bird, R. L. Hulstrom, A. W. Kliman, and H. G. Eldering, ’’Solar spectral measurements in the terrestrial environment,’’Appl. Opt., vol. 21, no. 8, pp. 1430-1436, Apr. 1982.
[27] Y. Hamakawa, Thin-Film Solar Cells-Next Generation Photovoltaics and Its Applications. Berlin, Germany: Springer-Verlag., 2004.
[28] J. Krc, G. Cernivec, A. Campa, J. Malmstrom, M. Edoff, F. Smole, and M. Topic, ’’Optical and electrical modeling of Cu(In,Ga)Se2 solar cells,’’ Opt. Quantum Electron., vol. 38, no. 12-14, pp. 1115-1123, Sept. 2006.
[29] S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, ’’CIGS absorbers and processes,’’ Prog. Photovoltaics Res. Appl., vol. 18, no. 6, pp. 453-466, Sept. 2010.
[30] S. C. Kim and I. Sohn, ’’Simulation of energy conversion efficiency of a solar cell with gratings,’’ J. Opt. Soc. Korea, vol. 14, no. 2, pp. 142-145, Jun. 2010.
指導教授 張殷榮(Yin-Jung Chang) 審核日期 2013-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明