參考文獻 |
[1] X. Michalet and S. Weiss, “Single-molecule spectroscopy and microscopy,” Comptes Rendus Physique, 3(5), 619-644 (2002).
[2] S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science, 283(5408), 1676-1683 (1999).
[3] P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends in Cell Biology, 9(2), 48-52 (1999).
[4] P. De Beule, D. M. Owen, H. B. Manning, C. B. Talbot, J. Requejo-Isidro, C. Dunsby, J. McGinty, R. K. P. Benninger, D. S. Elson, I. Munro, M. J. Lever, P. Anand, M. A. A. Neil, and P. M. W. French, “Rapid hyperspectral fluorescence lifetime imaging,” Microscopy Research and Technique, 70(5), 481-484 (2007).
[5] W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7075-7080 (2003).
[6] P. Colarusso, L. H. Kidder, I. W. Levin, J. C. Fraser, J. F. Arens, and E. N. Lewis, “Infrared spectroscopic imaging: From planetary to cellular systems,” Applied Spectroscopy, 52(3), 106A-120A (1998).
[7] Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Applied Optics, 33(24), 5721-5732 (1994).
[8] Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Applied Optics, 38(18), 3831-3843 (1999).
[9] D. Bannon, “Hyperspectral imaging cubes and slices,” Nature Photonics, 3, 627-629 (2009).
[10] H. Akbari, L. V. Halig, D. M. Schuster, A. Dewhirst, V. Master, P. T. Nieh, G. Z. Chen, and B. W. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” Journal of Biomedical Optics, 17(7), 076005 (2012).
[11] L. L. Randeberg, E. L. Larsen, and L. O. Svaasand, “Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory,” Journal of Biophotonics, 3(1-2), 53-65 (2010).
[12] B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” Journal of Biomedical Optics, 10(4), 44004 (2005).
[13] G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Physics in Medicine and Biology, 51(8), 2029-2043 (2006).
[14] Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Structure and Function, 27(5), 367-374 (2002).
[15] P. J. Cutler, M. Malik, S. Liu, J. Byars, D. Lidke, and K. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” Plos One, 8(5), e64320 (2013).
[16] R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: A novel approach for microscopic analysis,” Cytometry, 43(4), 239-247 (2001).
[17] M. Rajadhyaksha, M. Grossman, D. Esterowitz, and R. H. Webb, “In-vivo confocal scanning laser microscopy of human skin - melanin provides strong contrast ” Journal of Investigative Dermatology, 104(6), 946-952 (1995).
[18] M. C. Pedroso, M. B. Sinclair, H. D. T. Jones, and D. M. Haaland, “Hyperspectral confocal fluorescence microscope: A new look into the cell,” Microscopy and Microanalysis, 15, 880-881 (2009).
[19] M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Applied Optics, 45(24), 6283-6291 (2006).
[20] L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. C. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” Plos One, 6(5), e19925 (2011).
[21] A. J. Radosevich, M. B. Bouchard, S. A. Burgess, B. R. Chen, and E. M. C. Hillman, “Hyperspectral in vivo two-photon microscopy of intrinsic contrast,” Optics Letters, 33(18), 2164-2166 (2008).
[22] K. B. Im, M. S. Kang, J. Kim, F. Bestvater, Z. Seghiri, M. Wachsmuth, and G. Grailhe, “Two-photon spectral imaging with high temporal and spectral resolution,” Optics Express, 18(26), 26905-26914 (2010).
[23] Y. M. Wang, S. Bish, J. W. Tunnell, and X. J. Zhang, “MEMS scanner enabled real-time depth sensitive hyperspectral imaging of biological tissue,” Optics Express, 18(23), 24101-24108 (2010).
[24] F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods, 2(12), 932-940 (2005).
[25] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science, 248(4951), 73-76 (1990).
[26] D. W. Piston, B. R. Masters, and W. W. Webb, “3-Dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in-situ cornea with 2-photon excitation laser-scanning microscopy,” Journal of Microscopy-Oxford, 178, 20-27 (1995).
[27] I. T. Jolliffe, Principle Component Analysis. Springer, New York (2002).
[28] M. E. Dickinson, G. Bearman, S. Tille, R. Lansford, and S. E. Fraser, “Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy,” Biotechniques, 31(6), 1272,1274-6,1278 (2001).
[29] Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: Principles and applications,” Cytometry Part A, 69A(8), 735-747 (2006).
[30] http://zeiss-campus.magnet.fsu.edu/index.html
[31] G. peters and J. H. Wilkinson, “The least squares problem and pseudo-inverses,” The Computer Journal, 13, 309-316 (1970).
[32] F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” Journal of Microscopy-Oxford, 208, 108-115 (2002).
[33] http://en.wikipedia.org/wiki/Photosynthesis
[34] http://legacy.owensboro.kctcs.edu/gcaplan/bio/notes
[35] C. Buschmann, “Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves,” Photosynthesis Research, 92(2), 261-271 (2007).
[36] R. Pedros, I. Moya, Y. Goulas, and S. Jacquemoud, “Chlorophyll fluorescence emission spectrum inside a leaf,” Photochemical & Photobiological Sciences, 7(4), 498-502 (2008).
[37] N. Subhash and C. N. Mohanan, “Curve-fit analysis of chlorophyll fluorescence spectra: Application to nutrient stress detection in sunflower,” Remote Sensing of Environment, 60(3), 347-356 (1997).
[38] B. A. Pollok and R. Heim, “Using GFP in FRET-based applications,” Trends in Cell Biology, 9(2), 57-60 (1999).
[39] E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nature Biotechnology, 21(11), 1387-1395 (2003).
[40] http://microscopy.berkeley.edu/courses/TLM/fluor_techniques/fret.html |