博碩士論文 973409003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:18.226.98.89
姓名 巫秉融(Ping-jung Wu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析
(Growth and Characterization of Phosphorus Doped Silicon Nanocrystals Embedded in Silicon Nitride Matrix)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用★ 利用新穎方法製作鋁背表面電場應用於結晶矽太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了發展新一代的結晶矽太陽能電池並持續利用矽材料,許多有機會能改善電池轉換效率的新型矽奈米材料、結構或製程技術陸續被提出,其中,應用寬能隙矽基材料作為異質接面太陽能電池的射極藉以增加入射光的穿透率便是選項之一。在介電質基材中(如氧化矽、氮化矽或碳化矽)嵌入矽奈米晶粒可形成一種能隙略大於塊材隙的矽基複合薄膜結構,然而,若要將此新薄膜材料應用於太陽能電池的射極,仍必須克服矽奈米晶粒的摻雜製程以增加此薄膜材料的導電性。目前為止,在氧化矽或碳化矽基材中嵌入摻雜矽奈米晶粒之結構已開始陸續被探討與利用,然而,以氮化矽為基材嵌入摻雜矽奈米晶粒的材料開發與相關性質研究卻進展有限。
在本論文中,我們首次利用電子迴旋共振化學氣相沉積系統成長含有磷原子的富含矽氮化矽薄膜,並調整磷化氫對矽甲烷的氣體流量比例改變薄膜中磷原子的濃度。含有磷原子的富含矽氮化矽薄膜經過高溫退火後,便可形成在氮化矽基材中嵌入磷摻雜矽奈米晶粒的複合結構。本研究首先探討成長時所加入的磷原子濃度對退火時矽奈米晶粒結晶行為的影響,從實驗結果可知,磷原子的存在可加強富含矽氮化矽薄膜的相分離行為並加速矽奈米晶粒的結晶速率,固定退火條件下,相較於未含有磷原子之富含矽氮化矽薄膜,在含有磷原子的對照組薄膜中可形成尺寸較大的矽奈米晶粒。此外,在相分離與析出矽奈米晶粒的過程中,磷原子所佔據的位置也同時重新分佈,我們也對此鍵結結構的變化進行分析,並發現磷原子確實與矽奈米晶粒中的矽原子產生鍵結而可能位於取代位置。隨後,我們也發現隨著磷原子濃度的增加,磷摻雜矽奈米晶粒嵌入於氮化矽基材薄膜將會出現Fano干涉效應,同時其薄膜導電率亦出現變化,這兩項實驗結果可證實磷原子佔據在矽奈米晶粒中的取代位置且形成被活化之摻雜元素。最後,由於成功在氮化矽基材中形成n型摻雜的矽奈米晶粒,我們利用此薄膜製作矽基異質接面太陽能電池並獲得轉換效率8.6%。
摘要(英) For development of next generation crystalline Si solar cells, one of the new concepts for heterojunction solar cells is using wide bandgap materials as emitter layers due to the higher light transmittance. Silicon nanocrystals (Si-NCs) embedded in a wide bandgap dielectric matrix, such as SiOx, SiNx, and SiCx could be used for this purpose. Moreover, for increasing the conductivity of Si-NCs, incorporating the dopants into Si-NCs has also been demonstrated. So far, the doped Si-NCs in SiOx or SiCx matrix have been used for device fabrication. However, there are few studies for discovering the properties of the doped Si-NCs embedded in SiNx, even if SiNx has a higher bandgap than SiCx and better conductivity than SiOx theoretically.
In this dissertation, we first utilized electron cyclotron resonance chemical vapor deposition (ECRCVD) rather than sputtering or inhomogeneous implantation process to grow homogeneous Si-rich SiNx films doped with phosphorus atoms. The initial doping concentration was controlled by changing the introduced [PH3]/[SiH4] gas flow ratio. The as-grown phosphorus doped Si-rich SiNx thin films were then annealed for the formation of phosphorus doped Si-NCs. The effects of phosphorus additives on the Si crystallization behavior in Si-rich SiNx films were investigated. From the experimental results, existence of phosphorus enhances phase separation of Si-rich SiNx and Si crystallization rate. As the phosphorus content within the as-grown Si-rich SiNx thin film increases, the Si-NC size in the Si-NCs/SiNx film increases under the same annealing conditions. In addition, the bonding configurations of phosphorus atoms have been investigated and we could speculate that the phosphorus atoms would probably position at three regions according to the analysis results, including Si-NCs, boundaries between Si-NCs and SiNx, or SiNx matrix. Furthermore, observation of the Fano interference and improvement in conductivity of Si-NCs/SiNx films as a function of the phosphorus content within the as-grown Si-rich SiNx thin film provide evidences for the phosphorus activation, that is, the phosphorus atoms could position at the substitutional sites within Si-NCs. Owing to the achievement of Si-NCs n-type doping, Si-NCs/c-Si heterojunction solar cells have also been realized with a best power conversion efficiency of 8.6%.
關鍵字(中) ★ 磷摻雜矽奈米晶粒
★ 矽基異質接面太陽能電池
★ 電子迴旋共振化學氣相沉積
★ Fano干涉效應
關鍵字(英) ★ phosphorus doped Si nanocrystals
★ Si heterojunction solar cells
★ electron cyclotron resonance chemical vapor deposition
★ Fano interference
論文目次 中文摘要 I
Abstract II
Acknowledgement IV
Table of Contents V
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 Silicon Technology 1
1.2 Role of Silicon in Solar Cells 2
1.3 Overview of Dissertation 6
1.4 References 8
Chapter 2 Fundamentals of Silicon Nanocrystals 9
2.1 Introduction of Si-NCs 9
2.2 Phase Separation 11
2.3 Effect of the Dielectric Matrix on the Wide Bandgap Si-NCs/dielectric Films 15
2.4 Issue of Doped Si-NCs for the Realization of Electrical Devices 16
2.5 References 18
Chapter 3 Experimental Procedures 22
3.1 Instrumentation 22
3.2 Substrate Cleaning Procedures 25
3.3 Preparation of Undoped and Phosphorus-doped SRN Films 26
3.4 Annealing for the Segregation of Undoped and Phosphorus-doped Si-NCs 27
3.5 Fabrication of Photovoltaic Devices 27
3.6 Characterization methods 28
Chapter 4 Results and Discussions 31
4.1 Fundamental Characterizations of As-grown SiNx Films and Si-NCs embedded in SiNx matrix 31
4.1.1 Analysis of As-grown SiNx Films 31
4.1.2 Analysis of Si-NCs embedded in SiNx matrix 36
4.1.3 Summary 40
4.1.4 References 41
4.2 Influence of Phosphorous Doping on Si-NC Formation in SRN films 42
4.2.1 Results and Discussion 42
4.2.2 Summary 53
4.2.3 References 53
4.3 Phosphorus Content Dependent Microstructure and Carrier Transport Variations of Phosphorus-doped Si-NCs Embedded in SiNx Matrix 56
4.3.1 Results and Discussion 56
4.3.2 Summary 64
4.3.3 References 65
4.4 Fabrication of Si Heterojunction Solar Cells Using Phosphorus-doped Si-NCs embedded in SiNx Films as Emitters 66
4.4.1 Results and Discussion 66
4.4.2 Summary 77
4.4.3 References78
Chapter 5 Conclusions and Future Works 79
參考文獻 Chapter 1
1. http://en.wikipedia.org/wiki/Moore’s_law.
2. L.Canham, Appl. Phys. Lett. 57, 1046 (1990).
3. D. Chapin, C. Fuller, and G. Pearson, J. Appl. Phys. 25, 676 (1954).
4. J. Zhao, A. Wang, M. Green, Prog. Photovoltaics Res. Appl. 7, 471 (1999).
5. http://eu-solar.panasonic.net/fr/presse/news-article/article/panasonic-hitR-solar-cell-achieves-worlds-highest-conversion-efficiency-of-247-at-research-level-4/.
6. N. Lewis, Science 315, 798 (2007).
7. A. Wang, J. Zhao, S. Wenham, M. Green, Prog. Photovoltaics: Res. Appl. 4, 55 (1996).
8. R. Bergmann, C. Berge, T. Rinke, J. Schmidt, J. Werner, Sol. Energy Mater. Sol. Cells 74, 213 (2002).
9. http://actu.epfl.ch/news/new-world-record-efficiency-for-thin-film-silicon-/.
10. K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki, Y. Tawada, Sol. Energy 77, 939 (2004).
11. http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=743398.
12. http://www.empa.ch/plugin/template/empa/3/131438/---/l=2.
13. M. Green, Third Generation Photovoltaics: Ultra-High Efficiency at Low Cost, Springer-Verlag, Berlin (2003).
14. M. A. Green, et al., Progress with all-silicon tandem cells based on silicon quantum dots in a dielectric matrix, in: Proceedings of the 21st EU PVSEC, Dresden, pp. 10–14 (2006).
15. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, Sol. Energy Mater. Sol. Cells 90, 2952 (2006).
Chapter 2
1. T. Takagahara and K. Takeda, Phys. Rev. B 46, 15578 (1992).
2. Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, Nature 378, 258 (1995).
3. D. J. Lockwood, Z. H. Lu, and J.-M. Baribeau, Phys. Rev. Lett. 76, 539 (1996).
4. C. Jiang and M. Green, J. Appl. Phys. 99, 114902 (2006).
5. L. Canham, Appl. Phys. Lett. 57, 1046 (1990).
6. V. Lehmann and U. Gösele, Appl. Phys. Lett. 58, 856 (1991).
7. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, Appl. Phys. Lett. 80, 661 (2002).
8. J. Holmes, K. Ziegler, R. Doty, L. Pell, K. Johnston, and B. Korgel, J. Am. Chem. Soc. 123, 3743 (2001).
9. L. Mangolini, E. Thimsen, and U. Kortshagen, Nano Lett. 5, 655 (2005).
10. P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, Appl. Phys. Lett. 66, 851 (1995).
11. X. Hao, A. Podhorodecki, Y. Shen, G. Zatryb, J. Misiewicz, and M. Green, Nanotechnology 20, 485703 (2009).
12. T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, Appl. Phys. Lett. 85, 5355 (2004).
13. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, Phys. Rev. Lett. 86, 1355 (2001).
14. Y. Kanemitsu, J. Lumin. 70, 333 (1996).
15. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990).
16. S. Takeoka, M. Fujii, S. Hayashi, Phys. Rev. B 62,16820 (2000).
17. T. Kim, N. Park, K. Kim, G. Sung, Y. Ok, T. Seong, and C. Choi, Appl. Phys. Lett. 85, 5255 (2004).
18. T. Kim, C. Cho, B. Kim, and S. Park, Appl. Phys. Lett. 88, 123102 (2006).
19. G. Conibeer et al, Thin Solid Films 516, 6738 (2008).
20. Ph. D Dissertation of A. Seraphin (1996).
21. L. Yi, J. Heitmann, R. Scholz, and M. Zacharias, J. Phys.: Condens. Matter 15, S2887 (2003).
22. O. Feroughi, C. Sternemann, Ch. Sahle, M. Schroer, H. Sternemann, H. Conrad, A. Hohl, G. Seidler, J. Bradley, T. Fister, M. Balasubramanian, A. Sakko, K. Pirkkalainen, K. Hämäläinen, and M. Tolan, Appl. Phys. Lett. 96, 081912 (2010).
23. M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, Appl. Phys. Lett. 72, 2577 (1998).
24. Y. Wang, R. Smirani, and G. Ross, Nano Lett. 4, 2041 (2004).
25. R. Walters, G. Bourianoff, and H. Atwater, Nature 4, 143 (2005).
26. X. Hao, E. Cho, C. Flynn, Y. Shen, G. Conibeer, and M. Green, Nanotechnology 19, 424019(2008).
27. G. Scardera, T. Puzzer, G. Conibeer, and M. A. Green, J. Appl. Phys. 104, 104310 (2008).
28. G. Chang, F. Ma, D. Ma, and K. Xu, Nanotechnology 21, 465605 (2010).
29. M. Carroll, L. Brewer, J. Verley, J. Banks, J. Sheng, W. Pan, and R. Dunn, Nanotechnology 18, 315707 (2007).
30. D. Comedi, O. Zalloum, E. Irving, J. Wojcik, T. Roschuk, M. Flynn, and P. Mascher, J. Appl. Phys. 99, 023518 (2006)
31. E. Agocs, P. Petrik, S. Milita, L. Vanzetti, S. Gardelis, A. Nassiopoulou, G. Pucker, R. Balboni, M. Frieda, Thin Solid Films 519, 3002 (2011).
32. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, Appl. Phys. Lett. 93, 151116 (2008).
33. D. Song, E. Cho, G. Conibeer, Y. Huang, and M. Green, Appl. Phys. Lett. 91, 123510 (2007).
34. M. Zacharias and P. Streitenberger, Phys. Rev. B 62, 8391 (2000).
35. S. Huang and G. Conibeer, J. Phys. D: Appl. Phys. 46, 024003 (2013).
36. D. Song, E. Cho, G. Conibeer, C. Flynn, Y. Huang, and M. Green, Sol. Energy Mater. Sol. Cells 92, 474 (2008).
37. D. Song, E. Cho, G. Conibeer, Y. Huang, C. Flynn, and M. Green, J. Appl. Phys. 103, 083544 (2008).
38. Z. Wan, S. Huang, M. A. Green, G. Conibeer, Nanoscale Res. Lett. 6, 129 (2011).
39. M. S. Yang, K. S. Cho, J. H. Jhe, S. Y. Seo, J. H. Shin, K. J. Kim, and D. W. Moon, Appl. Phys. Lett. 85, 3408 (2004).
40. D. König, j. Rudd, M. Green, and G. Conibeer, Phys. Rev. B 78, 035339 (2008).
41. K. Murakami, R. Shirakawa, M. Tsujimura, N. Uchida, N. Fukata, and S. Hishita, J. Appl. Phys. 105, 054307 (2009).
42. K. Sato, K. Niino, N. Fukata, K. Hirakuri, and Y. Yamauchi, Nanotechnology 20, 365207 (2009).
43. M. Perego, C. Bonafos, and Marco Fanciulli, Nanotechnology 21, 025602 (2010).
44. G. Dalpian and J. Chelikowsky, Phys. Rev. Lett. 96 226802 (2006).
45. S. Erwin, L. Zu, M. Haftel, A. Efros, T. Kennedy, and D. Norris, Nature 436, 91 (2005).
46. T.-L. Chen, M. L. Tiago, E. Kaxiras, and J. R. Chelikowsky, Nano Lett. 8, 596 (2008).
47. X. Pi, R. Gresback, R. Liptak, S. Campbell, and U. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008).
48. S. Gutsch, A. M. Hartel, D. Hiller, N. Zakharov, P. Werner, and M. Zacharias, Appl. Phys. Lett. 100, 233115 (2012).
49. M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 75, 184 (1999).
50. X. Hao, E. Cho, C. Flynn, Y. Shen, S. Park, G. Conibeer, M. Green, Sol. Energy Mater. Sol. Cells 93, 273 (2009).
51. X. Hao, E. Cho, G. Scardera, Y. Shen, E. Bellet-Amalric, D. Bellet, G. Conibeer, M. Green, Sol. Energy Mater. Sol. Cells 93, 1524 (2009).
52. E.-C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S.-C. Park, and M. A. Green, Nanotechnology 19, 245201 (2008).
53. S. H. Hong, Y. S. Kim, W. Lee, Y. H. Kim, J. Y. Song, J. S. Jang, J. H. Park, S.-H. Choi, and K. J. Kim, Nanotechnology 22, 425203 (2011).
54. M. Fujii, Y. Inoue, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 68, 3749 (1996).
55. X. Zhou, K. Usami, M. Rafiq, Y. Tsuchiya, H. Mizuta, and S. Oda, J. Appl. Phys. 104, 024518 (2008).
56. I. Balberg, J. Jedrzejewski, and E. Savir, Phys. Rev. B 83, 035318 (2011).
57. Y. So, S. Huang, G. Conibeer, and M. Green, Europhysics Letters 96, 17011(2011).
Chapter 4
Section 4-1
1. S. M. Sze, Semiconductor Devices: Physics and Technology 2nd Edition, Wiley (2002).
2. G. Scardera, T. Puzzer, G. Conibeer, and M. A. Green, J. Appl. Phys. 104, 104310 (2008).
3. S. Hasegawa, L. He, Y. Amano, and T. Inokuma, Phys. Rev. B 48, 5315 (1993).
4. S. Hasegawa, M. Matsuda, and Y. Kurata, Appl. Phys. Lett. 57 2211 (1990).
5. A. Pasquarello and R. Car, Phys. Rev. Lett. 80, 5145 (1998).
6. S. Huang and G. Conibeer, J. Phys. D: Appl. Phys. 46, 024003 (2013).
7. J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, Appl. Phys. Lett. 69, 200 (1996).
Section 4-2
1. X. Hao, E. Cho, G. Scardera, E. Bellet-Amalric, D. Bellet, Y. Shen, S. Huang, Y. Huang, G. Conibeer, and M. Green, Thin Solid Films 517, 5646 (2009).
2. D. Tsu, G. Lucovsky, and M. Mantini, Phys. Rev. B 33, 7069 (1986).
3. S. Hasegawa, L. He, Y. Amano, and T. Inokuma, Phys. Rev. B 48, 5315 (1993).
4. E. Bustarret, M. Bensouda, M. Habrard, J. Bruyère, S. Poulin, and S. Gujrathi, Phys. Rev. B 38, 8171 (1988).
5. C. Powell, Appl. Surf. Sci. 89, 141 (1995).
6. B. Li, T. Fujimoto, N. Fukumoto, K. Honda, and I. Kojima, Thin Solid Films 334, 140 (1998).
7. M. Perego, C. Bonafos, and M. Fanciulli, Nanotechnology 21, 025602 (2010).
8. Z. Meng, Y. Peng, Z. Yang, and Y. Qian, Chem. Lett. 29, 1252 (2000).
9. S. Vepřek, Z. Iqbal, J. Brunner, and M. Schärli, Phil. Mag. B 43, 527 (1981).
10. L. Mercaldo, E. Esposito, P. Veneri, G. Fameli, S. Mirabella, and G. Nicotra, Appl. Phys. Lett. 97, 153112 (2010).
11. J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, Appl. Phys. Lett. 69, 200 (1996).
12. L. Csepregi, E. Kennedy, T. Gallagher, J. Mayer, and T. Sigmon, J. Appl. Phys. 48, 4234 (1977).
13. R. Bergmann and J. Krinke, Cryst. Growth 165, 341 (1996).
14. E. Kennedy, L. Csepregi, J. Mayer, and T. Sigmon, J. Appl. Phys. 48, 4241 (1977).
15. G. Kachurin, S. Yanovskaya, D. Tetelbaum, and A. Mikhailov, Semiconductors 37, 738 (2003).
16. M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, Appl. Phys. Lett. 85, 1158 (2004).
17. G. Kachurin, S. Cherkova, V. Volodin, V. Kesler, A. Gutakovsky, A. Cherkov, A. Bublikov, and D. Tetelbaum, Nucl. Instrum. Methods Phys. Res. B 222, 497 (2004).
18. W. Armstrong and D. Tolliver, J. Electrochem. Soc. 121, 307 (1974).
19. A. Adams and C. Capio, J. Electrochem. Soc. 128, 423 (1981).
20. R. Bowling and G. Larrabee, J. Electrochem. Soc. 132, 141 (1985).
21. Z. Zeng, A. Liang, and J. Zhang, Electrochim. Acta 53, 7344 (2008).
22. L. Ding, A. Wang, G. Li, Z. Liu, W. Zhao, C. Su, and Y. Tong, J. Am. Chem. Soc. 134, 5730 (2012).
23. D. Tetelbaum and A. Gerasimov, Semiconductors 38, 1260 (2004).
Section 4-3
1. G. Scardera, T. Puzzer, G. Conibeer, and M. A. Green, J. Appl. Phys. 104, 104310 (2008).
2. S. Hasegawa, L. He, Y. Amano, and T. Inokuma, Phys. Rev. B 48, 5315 (1993).
3. H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
4. J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, Appl. Phys. Lett. 69, 200 (1996).
5. N. Nickel, P. Lengsfeld, and I. Sieber, Phys. Rev. B 61, 15558 (2000).
6. R. Gupta, Q. Xiong, C. K. Adu, U. J. Kim, and P. C. Eklund, Nano Lett. 3, 627 (2003).
7. N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. Hong, Z. L. Wang, and R. L. Snyder, ACS Nano 4, 3807 (2010).
8. S. Solmi, G. Celotti, D. Nobili, and P. Negrini, J. Electrochem. Soc. 123, 654 (1976).
Section 4-4
1. J. Langford and A. Wilson, J Appl. Crystallogr. 11, 102 (1978).
2. D. Comedi, O. Zalloum, E. Irving, J. Wojcik, T. Roschuk, M. Flynn, and P. Mascher, J. Appl. Phys. 99, 023518 (2006).
3. G. Scardera, T. Puzzer, G. Conibeer, and M. Green, J. Appl. Phys. 104, 104310 (2008).
4. G. Conibeer, M. Green, E. Cho, D. König, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, D. Mansfield, Thin Solid Films 516, 6748 (2008).
5. D. Macdonald, A. Cuevas, Proceedings of the 16th European Photovoltaic Solar Energy Conference 1707 (2000).
6. O. Schultz, S. Glunz, G. Willeke, Prog. Photovoltaics 12, 553 (2004).
指導教授 陳一塵(I-chen Chen) 審核日期 2013-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明