博碩士論文 992212006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:18.219.99.29
姓名 杜羿嶢(Yi-Yao Du)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 以光激發螢光預測晶圓製成太陽能電池之效率
(Photoluminescence in solar cell efficiency prediction in wafer procedure)
相關論文
★ 電激發有機雷射微共振腔研究★ 偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究
★ 高功率脈衝磁控濺鍍技術鍍製高硬度光學多 層膜的研究★ 膜堆光學導納量測儀
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 定光電流量測法在氫化矽薄膜特性的研究★ 動態干涉儀量測薄膜之光學常數
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用光激發螢光影像技術,建立圖像演算以及連結微觀載子行為至宏觀電性行為,也成功以晶圓螢光影像達到太陽能電池效率之預測。原始晶圓螢光影像經過圖像演算法後其螢光影像與濕清洗螢光影像之SSIM值從0.5461提升至0.6205。最終本研究針對357片晶圓影像作效率預測,與實際製成太陽能電池所量測效率之對應相關係數也高達0.6762。
摘要(英) The article utilizes photoluminescence(PL) imaging technology and successfully links macroscopic and microscopic phenomena. Solar cell efficiency prediction in as-cut wafer process with the help of photoluminescence is obtained. The SSIM values of as-cut wafer PL image and after calculated to wet-clean PL image raise from 0.5461 to 0.6205. 357 pieces solar cell procedure are utilized to confirm the method in this article. Correlation of predicted efficiency in as-cut wafer process and real efficiency in solar cell process is 0.6762.
關鍵字(中) ★ 太陽能電池
★ 效率預測
關鍵字(英) ★ solar cell
★ efficiency prediction
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
第一章 緒論 1
1-1 前言 1
1-2 研究背景 5
1-3 研究動機 6
1-4 論文架構 8
第二章 理論背景 10
2-1 太陽能電池發電原理 10
2-2 太陽能電池製程步驟介紹 11
2-3 光激發螢光原理 12
2-3-1 吸收係數 15
2-3-2 產生率 17
2-3-3 復合率 20
2-3-4 螢光與額外載子之關係 22
2-3-5 太陽能電池等效電路模型 30
2-3-6 太陽能電池之效率 34
2-4 Pixel-by-pixel演算法 36
2-5 結構相似品質指標 38
第三章 實驗步驟與結果 39
3-1 實驗設備要求與架構 39
3-1-1 實驗設備要求 39
3-1-2 實驗架構 41
3-1-3 入射光分佈 42
3-1-4 光強對應灰階 43
3-2 實驗流程 45
3-3 影像處理 45
3-3-1 螢光強度校正 47
3-3-2 暗區擴散 48
3-4 數據處理 51
3-5 結果與討論 54
第四章 結論 64
第五章 未來展望 65
參考文獻 66
參考文獻 [1] World Energy Council, "Energy Resources" http://www.worldenergy.org/data/resources/
[2] Dr. Pieter Tans, "NOAA/ESRL," http://www.esrl.noaa.gov/gmd/ccgg/trends/
[3] Taiwan Solar Thermal Energy Association, "太陽能介紹," http://www.taiwansolar.org.tw/c3_3.php
[4] WIKIPEDIA, "Kyoto Protocol," http://en.wikipedia.org/wiki/Kyoto_Protocol
[5] WIKIPEDIA, "2011 Tōhoku earthquake and tsunami," http://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami
[6] National Renewable Energy Laboratory, "Reference Solar Spectrum Irradiance," http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html
[7] 顧鴻壽, Introduction Solar Cell Devices: 全威圖書有限公司, 2008.
[8] 蔡進譯, "超高效率太陽能電池-從愛因斯坦的光電效應談起," 物理雙月刊, vol. 廿七, pp. 702-719, 2005.
[9] National Renewable Energy Laboratory, "Best Research-Cell Efficiencies," http://www.nrel.gov/
[10] V. J. Bruce, "Energy resolved emission microscopy," IEEE, pp. 178-183, 1993.
[11] A. G. Chynoweth and K. G. McKay, "Photon Emission from Avalanche Breakdown in Silicon," Physical Review Letters, vol. 102, pp. 356-376, 1956.
[12] M. D. Abbott, J. E. Cotter, F. W. Chen, T. Trupke, R. A. Bardos, and K. C. Fisher, "Application of photoluminescence characterization to the development and manufacturing of high-efficiency silicon solar cells," Applied Physics Letters, vol. 100, 2006.
[13] T. Trupke, E. Daub, and P. Wurfel, "Absorptivity of silicon solar cells obtained from luminescence," Solar Energy Materials and Solar Cells, vol. 53, pp. 103-114, 1998.
[14] N. Khurana and C.-L. Chiang, "Analysis of Product Hot Electron Problems by Gated Emission Microscop," IEEE, pp. 189-194, 1986.
[15] T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, and Y. Uraoka, "Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence," Applied Physics Letters, vol. 86, 2005.
[16] I. Tarasov, S. Ostapenko, K. Nakayashiki, and A. Rohatgi, "Defect passivation in multicrystalline silicon for solar cells," Applied Physics Letters, vol. 85, pp. 4346-4348, 2004.
[17] S. Ostapenko, I. Tarasov, J. P. Kalejs, C. Haessler, and E.-U. Reisner, "Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon wafers," Semiconductor Science and Technology, vol. 15, pp. 840-848, 2000.
[18] I. Tarasov, S. Ostapenko, V. Feifer, S. McHugo, S. V. Koveshnikov, J. Weber, C. Haessler, and E.-U. Reisner, "Defect diagnostics using scanning photoluminescence in multicrystalline silicon," Physica B: Condensed Matter, vol. 273-274, 1999.
[19] L. Raniero, N. Martins, P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, "Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell," Solar Energy Materials and Solar Cells, vol. 87, pp. 349-355, 2005.
[20] R. A. Bardos, T. Trupke, M. C. Schubert, and T. Roth, "Trapping artifacts in quasi-steady-state photoluminescence and photoconductance lifetime measurements on silicon wafers," Applied Physics Letters, vol. 88, 2006.
[21] T. Trupke, J. Nyhus, and J. Haunschild, "Luminescence imaging for inline characterisation in silicon photovoltaics," Physica Status Solidi (RRL), vol. 5, pp. 131-137, 2011.
[22] S. O. Kasap, Optoelectronics and Photonics:Principles and Practices. U.S.A: Prentice Hall, 2001.
[23] D. A. Neamen, "An Introduction to Semiconductor Devices," in 半導體元件概論, 陳進祥, Ed. 台北市: 美商麥格羅・希爾國際股份有限公司台灣分公司, 2007.
[24] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica Status Solidi (RRL), vol. 34, pp. 149-154, 1967.
[25] G. Bastard, "Optical Studies of Gaas Quantum Wells," Luminescence, vol. 40, pp. 33-36, 1988.
[26] J. I. Pankove, OPTICAL PROCESSES INSEMICONDUCTORS. New York: Dover, 1971.
[27] M. A. Green and M. J. Keevers, "Optical properties of intrinsic silicon at 300 K," Progress in Photovoltaics: Research and Applications, vol. 3, pp. 189-192, 1995.
[28] PharmaxChange.info, "Ultraviolet-Visible (UV-Vis) Spectroscopy – Derivation of Beer-Lambert Law," http://pharmaxchange.info/press/2012/04/ultraviolet-visible-uv-vis-spectroscopy-%E2%80%93-derivation-of-beer-lambert-law/
[29] T.-Y. C. Chia-Liang Yeh, and Sheng-Hui Chen, "Photoluminescence Imaging for Excess Carrier Lifetime and Series Resistance Measurement in Silicon Solar cells," in Department of Optics and Photonics: National Central University, 2009.
[30] T.-Y. C. Ying-Chang Chung, and Sheng-Hui Chen, "Spatial Distribution Measurement of Physical Parameters for Crystalline Silicon Solar Cells using Photoluminescence Signal," in Department of Optics and Photonics: National Central University, 2010.
[31] D. M. Caughey and R. E. Thomas, "Carrier mobilities in silicon empirically related to doping and field," IEEE, vol. 55, pp. 2192-2193, 1967.
[32] B. G. Streetman and S. K. Banerjee, "Solid State Electronic Devices," in 半導體元件, 吳孟奇, 洪勝富, 連振炘, and 龔正, Eds. 台北市: 台灣培生教育出版股份有限公司, 2007.
[33] WIKIPEDIA, "Solar cell," http://en.wikipedia.org/wiki/Fill_factor_(solar_cell)#Efficiency
[34] PVCDROM, "Efficiency," http://www.pveducation.org/pvcdrom/solar-cell-operation/efficiency
[35] WANG, Zhou, et al. Image quality assessment: From error visibility to structural similarity. Image Processing, IEEE Transactions on, 2004, 13.4: 600-612.
指導教授 鍾德元、陳昇暉
(Te-Yuan Chung、Sheng-Hui Chen)
審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明