博碩士論文 100522609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.135.194.138
姓名 陳慶治(Qingzhi Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱
(Improvement of Kernel Dependency Estimation and Case Study on Skewed Data)
相關論文
★ 行程邀約郵件的辨識與不規則時間擷取之研究★ NCUFree校園無線網路平台設計及應用服務開發
★ 網際網路半結構性資料擷取系統之設計與實作★ 非簡單瀏覽路徑之探勘與應用
★ 遞增資料關聯式規則探勘之改進★ 應用卡方獨立性檢定於關連式分類問題
★ 中文資料擷取系統之設計與研究★ 非數值型資料視覺化與兼具主客觀的分群
★ 關聯性字組在文件摘要上的探討★ 淨化網頁:網頁區塊化以及資料區域擷取
★ 問題答覆系統使用語句分類排序方式之設計與研究★ 時序資料庫中緊密頻繁連續事件型樣之有效探勘
★ 星狀座標之軸排列於群聚視覺化之應用★ 由瀏覽歷程自動產生網頁抓取程式之研究
★ 動態網頁之樣版與資料分析研究★ 同性質網頁資料整合之自動化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 核依賴估計是一個計算兩個抽象物件之間的依賴的學習架構。雖然已經有很多方面的應用,但是它的一些特性還沒有被徹底的研究。本文討論了核依賴估計的兩個實際操作中常見的問題。第一個問題是它對每個標籤的實數值輸出與最終目標所希望求得的二進位值還是有所區別的。通常解決這個問題的做法是使用特定的臨界值策略。本文提出一個替代方法,通過特殊的堆疊歸納法,加入了一個第二層的分類器。第二個問題是關於核依賴估計應用於不平衡數據集時性能的衰減現象。我們的實驗結果顯示核依賴估計並不直接適用於不平衡數據集,對此我們提出了補救措施來處理不平衡數據集。
摘要(英) Kernel dependency estimation is a learning framework of finding the dependencies between two general classes of objects. Although already succeeded in many kinds of applications, its properties are not fully studied. In this paper we will discuss two practical issues in it. The first one is about its real-value output for each label which is different from the ultimate target-binary value for one of k coding scheme. Thus there usually exists a gap between predicted real-value from KDE and the ground true binary value. One common practice to reduce the gap is using threshold strategies. In this paper we provide an alternative approach to combine a second level classifier by a special degenerated form of stacked generalization. The second issue is about how the performance decreases when KDE is applied to classification with skewed data, our experiments show KDE is not an appropriate approach for skewed data, and then we provide a remedy to handle the skewed data.
關鍵字(中) ★ 分類
★ 核依賴估計
關鍵字(英) ★ classification
★ Kernel dependency estimation
論文目次 Abstract i
致谢 ii
Chapter 1 Introduction 1
Chapter 2 Kernel Dependency Estimation 4
Chapter 3 Information Generalization and Stacked Generalization 6
Chapter 4 KDE with skewed dataset 13
Chapter 5 Experiments 19
Chapter 6 discussion and future work 30
Reference 31
參考文獻 [1] W. Bi and J.T. Kwok. Multi-label classification on tree- and DAG-structured hierarchies. In Proceedings of the 28th International Conference on Machine Learning, pages 17–24, 2011.
[2]K. Dembczynski, W. Waegeman, W. Cheng, and E. Hüllermeier. On Label Dependence in Multi-Label Classification. In Proceedings of the 2nd International Workshop on Learning from Multi-Label Data, pages. 5-12, 2010.
[3] V. Ganganwar. An overview of classification algorithms for imbalanced datasets. International Journal of Emerging Technology and Advanced Engineering, Volume 2, Issue 4, April 2012.
[4] J. V. Hulse, M. Khoshgoftaar , and A. Napolitano. Experimental perspectives on learning from imbalanced data. In Proceeding ICML ’07 Proceedings of the 24th international conference on Machine learning, pages. 935-942, 2007.
[5] M. Ioannou, G. Sakkas, G. Tsoumakas, and I. P. Vlahavas. Obtaining Bipartitions from Score Vectors for Multi-Label Classification, International Conference on Tools with Artificial Intelligence - ICTAI , vol. 1, pp. 409-416, 2010.
[6] J. R. Quevedo, O. Luaces, and A. Bahamonde. Multilabel classifiers with a probabilistic thresholding strategy, Pattern Recognition, vol. 45, no. 2, pp. 876–883, 2012.
[7] L Rokach, Ensemble-based classifiers, Artificial Intelligence Review, Vol. 33, No. 1-2, pp. 1-39, 2009.
[8] S. Russell and P. Norvig. Artificial Intelligence : A Modern Approach Third Edition 2010, Prentice Hall.
[9] M. Sewell, Ensemble Learning (2008) edited by University College London.
[10] F. Tai, and H.T Lin. Multi-label classification with principle label space transformation. In Proceedings of the 2nd International Workshop on Learning from Multi-Label Data, Haifa, Israel, 2010.
[11]G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining Multi-label Data. Data Mining and Knowledge Discovery Handbook, O. Maimon, L. Rokach (Ed.). Springer, 2nd edition, 2010a.
[12] D. H. Wolpert. Stacked Generalization, Neural Networks, Vol. 5, pages 241—259, 1992.
[13] J. Weston, O. Chapelle, A. Elisseeff, B. Sch¨olkopf, and V. Vapnik. Kernel dependency estimation. In Advances in Neural Information Processing Systems 15, 2003.
[14] Y.M Yang. A study of thresholding strategies for text categorization. Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. Pages 137-145. 2001
[15] M. L. Zhang and Z. H. Zhou. A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering, in press.
指導教授 張嘉惠(Chia-Hui Chang) 審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明